第208期 2024年7月刊
 
最新消息與活動公告 │ 教師研究成果專欄 │ 光電所博士班應屆畢業生研究成果專欄 │ 光電要聞
 
 
發行人:吳育任所長  編輯委員:曾雪峰教授  主編:林筱文  發行日期:2024.07.30
 
 

本所吳育任教授與校同仁榮獲「大專校院113年度教職員工慢速壘球錦標賽」冠軍,特此恭賀!

 

 
 

Noise Reduction Through Square Aperture Array in Integral Imaging-based 3D Light-Field Display

Professor Hoang-Yan Lin

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所 林晃巖教授

The integral-imaging based 3D light field display can restore its light-field information, reconstruct different images in different depth planes, and realize the floating projection effect. In the metaverse, AR/VR wearable devices, HUD for smart cockpits, medical care, entertainment, art performance and other scenarios, naked-eye 3D display is one of the most crucial requirements for the coming future.

We have created 3D floating images with an integral imaging-based 3D light field display. However, noise is an annoying problem after restoring information in 3D light field displays. In this study, we proposed a square aperture array to be added to the original light field display to solve the noise problem and find out that an aperture array can effectively decrease the noise. Also, the light intensity will be decreased a lot for the circle aperture array case but will not be decreased for our square aperture array design. Finally, we created naked-eye 3D images with very little noise and also without light intensity sacrifice.

Firstly, we show a light-emitting angle = 90 degrees for the sample, we will create a picture at different depths (z) as shown in Fig. 1. Looking closely at Figs. 1 (a)(b)(c), we can find out that there are 4 dim letters A around the bright letter A and the same situation in letters B and C. We regard those dim letters as noise and it is produced by a light ray that does not obey the principle of CGEI.

 

Fig. 1 Images in different depths (z) (a) A at z = 200mm (b) B at z = 105.37 mm (c) C at z = 48 mm.

After knowing the best position of the aperture array, we have shown the restored image in different depths (z) in Fig. 2 when aperture array X=7 mm. We set parameter X for the distance between the aperture array and the display panel. We can discover that there isn’t any dim letter next to the bright letter, which means that we successfully eliminate the noise!

 

Fig. 2 Image in different depths with aperture array (a) A at z = 200mm (b) B at z = 105.37 mm (c) C at z = 48 mm.

 

Reference:

Chia-Yuan Chang and Hoang-Yan Lin, Noise Reduction Through Square Aperture Array in Integral Imaging-based 3D Light-Field Display, SID Display Week 2023.

 

Photonic Mixing Sub-THz Carrier for Wireless Data Link with Single-Chip Dual-Wavelength DFBLD

Professor Gong-Ru Lin

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所 林恭如教授

Sub-THz wireless communication technology has emerged as a promising candidate to extend the carrier frequency toward previously unexplored bands to enable the ultra-wide-band short-range data link beyond 6G. The optical heterodyned generation of millimeter-wave wireless carriers via discrete laser sources is intriguing in view of the currently available technologies for carrier synthesis because of its flexibility on frequency tunability. However, finite modal linewidth and residual wavelength drift are two main concerns that raise the noise background to degrade the signal-to-noise ratio of the data encoded onto the heterodyned carrier. Maintaining the difference and stability of wavelength and phase between two independent lasers usually relies on additional controlling and feedback schemes such as a phase-locked loop. This inevitably induces systematic complexity and alternative solution needs to be considered for simplification. In this work, a dual-mode distributed feedback laser diode (DFBLD) is demonstrated as a monolithic wireless sub-THz carrier synthesizer with absolute wavelength (frequency) differentiation and phase synchronization between two lasing longitudinal modes. By directly encoding the DFBLD with QAM-OFDM data format, the wireless data link can be performed via such a compact and simplified sub-THz wireless transmitter.

 

The dual-mode-lasing DFBLD is designed by slightly tilting the DFB mirror structure by an angle f to the surface normal of the output end-face at one side of the resonant cavity, which enables the concurrent lasing of both longitudinal modes inside the DFBLD cavity. Such a design combined with a short cavity results in a mode spacing of 2-3 nm to cause a frequency difference tunable from 320 to 330 GHz. The dual-mode-lasing DFBLD exhibits two distinct longitudinal modes centered at 1545-1546 nm and 1547-1548 nm, respectively. The back-to-back sub-THz wireless link is demonstrated by transmitting the NRZ-OOK data stream at 5 GBaud, revealing the quality factor and bit-error ratio of nearly 4 and 5e-5, respectively. By amplifying the 16-QAM DMT data amplitude, the received constellation plot of the down-converted baseband DMT data shows a blurred spot with an increased EVM. The signal-to-noise ratio remains above 15 dB over 95% of the encoding bandwidth, providing a BER of 2.3x10-3 of the broadened 16-QAM formats at allowable data rates of 12 Gbit/s. The fully integrated dual-mode-lasing DFBLD chip can serve as a novel compact sub-THz transmitter as compared to those using individual laser sources and external data modulators.

本文為與臺灣大學電機系鄭宇翔教授合作之成果。

Reference:

1. C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, and G.-R. Lin, “39-GHz millimeter-wave carrier generation in dual-mode colorless laser diode for OFDM-MMWoF transmission,” IEEE J. Sel. Top. Quantum Electron., vol. 21, pp. 609-618, Nov.-Dec. 2015

2. C.-T. Tsai, C.-H. Lin, C.-T. Lin, Y.-C. Chi, and G.-R. Lin, “60-GHz millimeter-wave over fiber with directly modulated dual-mode laser diode,” Sci. Rep. vol. 6, no. 27919, Jun. 2016.

 

 
 

論文題目:矽奈米結構與晶片本質特性對高效率單多晶與矽/有機異質結太陽能電池的影響

姓名:薛丞智   指導教授:林清富教授

 

摘要

本論文深入探討了矽奈米結構以及晶片本質特性對於單晶與多晶矽/無機異質結太陽能電池高效轉換性能的貢獻。綜述了當前高效太陽能電池的技術發展趨勢,關注於矽基太陽能電池在降低成本與提升轉換效率方面的研究重點。透過創新的實驗設計,深入分析了矽奈米結構對於提升太陽能電池效率的關鍵貢獻。利用改良的金屬輔助化學蝕刻技術,在6英寸的單晶與多晶矽晶片上成功製造了均勻的矽奈米線陣列,如圖一所示,整體呈現黑色,而圖二顯示了矽奈米線陣列的SEM圖,採用矽奈米線陣列的P型多晶鋁背面場電池相比於傳統粗化技術製作的多晶電池顯著提升了元件效能,光電轉換效率(PCE)達17.83%,並有效解決了P型多晶矽由於鑽石線切割產生的光滑表面難以粗化的問題。接著專注於矽晶片本質特性研究,探討了金屬雜質與光衰減(硼氧)對於P型高效能多晶矽晶片品質的影響,以及電阻率對於鈍化射極與背面太陽能電池效率的影響。其中N型材料在減少金屬雜質影響和提升少數載子體壽命與電池效率方面的潛力。最後專注於N型單晶矽奈米線結構與有機材料PEDOT:PSS結合製作異質結太陽能電池的研究,最後通過兩階段硝酸銀蝕刻製備的高密度矽奈米洞結構與DMSO混合的PEDOT:PSS相結合,降低了接觸角,使有機溶劑更有效覆蓋奈米洞,提升了載子傳輸效率,最終Jsc為36.80 mA/cm²,Voc為524.15mV,FF為66.50%,因此PCE達到了12.82%。

圖一、單多晶矽晶片蝕刻前(a)(c)與蝕刻後(b)(d)

圖二、單晶矽晶片蝕刻後(a)(b)、多晶矽晶片蝕刻後SEM圖

 

 

 
 

— 資料提供:影像顯示科技知識平台 (DTKP, Display Technology Knowledge Platform) —

— 整理:林晃巖教授、黃茂愷 —

鐵電中的全光極化切換

使用窄帶寬可調紅外雷射脈衝進行的超快光學實驗,在接近零介電常數(epsilon-near-zero, ENZ)的狀態下,使鈦酸鋇(BaTiO3)中的鐵電極化實現了非揮發性的全光切換。

鑒於提升數據記錄速度的重要性,數十年來,利用單一超短雷射脈衝在固態系統中探索非揮發性全光切換有序參數的途徑,仍然是熱門研究主題。根本問題在於朝向最終狀態的轉變,受到超快的飛秒至微秒時間尺度上之多種非平衡動力學的影響。在鐵磁系統中,透過微小的磁光效應來微調雷射與材料的交互作用,能夠闡明主要的切換機制。

在鐵電材料的特定案例中,鐵電疇(ferroelectric domain)與獨特的原子配置有關聯,這表明需要對單位晶胞內的原子配置進行超快控制。早期的理論研究建議,利用適當場形的太赫茲(THz)脈衝電場,可以將鐵電晶體中的離子從初始疇方向中的位置,沿著明確的微觀路徑移動到新疇中的位置。近年來,透過激發鋰鈮酸鹽(LBO)中的大振幅紅外活性聲子,已足以創造出接近切換區的瞬態原子配置。

儘管非揮發性鐵電切換無法在這個實驗中展示,這項工作明確突顯了在此類實驗中由光學聲子介導的非線性光學交互作用的重要性。在使用MHz重複頻率雷射光源進行掃描飛秒雷射寫入實驗中,已經實現了鋰鈮酸鹽中的永久性與可重構性之極化切換,然而切換主要受到沿雷射掃描方向引起的熱電場影響。迄今為止,尚不清楚這些不同機制中哪一個是實現使用單一超短雷射脈衝隨選進行非揮發性鐵電切換的關鍵。

現在,Kwaaitaal及其同事在《Nature Photonics》上發表文章,探討了由自由電子雷射(在Nijmegen的FELIX設備)超短紅外脈衝之爆發輻照下,鈦酸鋇這種鈣鈦礦型材料之鐵電極化的動態研究。該實驗處於類單次脈衝的狀態,因為每個樣品位置都被8微秒(μs)長的中紅外窄帶寬脈衝輻照,這些脈衝由間隔40奈秒(ns)的200皮秒(ps)脈衝組成。自由電子雷射在7到28微米(μm)的波長範圍內具有廣泛的可調性,並且脈衝能量高達幾微焦(μJ),這是研究雷射驅動鐵電極化動態的理想條件,跨越兩個光學聲子共振點,分別位於14和21微米波長。

在這項研究中,特別注意了發展不同的實驗方法,以清晰且明確地識別鐵電疇。偏振顯微鏡足以識別90度疇(見圖一(b)),而產生二次諧波顯微鏡則必須用於觀察180度疇(見圖一(c))。

 

圖一 、

(a)–(c) 樣品受飛秒紅外雷射脈衝照射後,導致0度極化疇永久性重新定向為90度疇(b)和180度疇(c)。

(d) 切換疇的標準化面積取決於激發波長。

(e) 切換的最大值與介電函數的ENZ條件相關,其量化為線性介電函數在大約14微米和21微米附近的兩個共振的光譜依賴性。

(f) ENZ範圍伴隨著強烈的色散效應,最顯著的是在第二個共振點處群速指數高達四十倍增加。

這些顯微鏡影像的定量分析使得能夠測量切換區隨激發波長變化的情況(見圖一(d))。值得注意的是,研究人員能夠將切換效率的最大值與介電函數的零點相關聯。也就是說,與鈦酸鋇特有的聲子性質自然產生的ENZ條件相對應。因此,研究人員一方面顯示,鈦酸鋇實現了他們所定義的自然「聲子」ENZ材料,另一方面,在ENZ條件下,光與物質的強烈放大交互作用導致了長期以來所追求且迄今難以實現的非揮發性全光切換其鐵電極化。

具體的微觀切換機制仍然存在較大的不明確性。初步的時間解析研究似乎表明鐵電疇的超快重新定向。在應用了幾種儀器限制時間解析的時間解析技術後,研究人員估計切換時間的上限大約在3奈秒左右。

為了進一步探索切換現象的光子學面向,需要更加理解ENZ材料獨特且獨有的光學性質。圖一(f) 顯示在兩個共振點上的強烈色散效應,其中光速群指數在激發輻射中高達40倍增加,這表明光速的明顯減慢。在這樣的慢光區域中,中紅外脈衝與鐵電材料的交互作用時間可以大大超過真空中的脈衝持續時間。這一卓越的特性確實有望透過相干控制或非線性光學模型的透鏡來理解導致切換現象的機制。除了這些已確立的理論概念外,作者還發展了一個簡單的理論模型,解釋樣品的雷射加熱如何產生溫度應變的準靜態高斯分佈,進而生成與切換疇匹配的極化分布。儘管有這些令人興奮的觀察,尋找鐵電切換的極限速度仍然是一個引人入勝的課題。考慮到桌面型低重複率μJ能量中紅外光參數放大器(OPA)基於飛秒雷射源的可用性,可以透過光學飛秒時間解析極化敏感顯微技術來解決在真正單次脈衝制度中超快鐵電切換的確切途徑。

晶格、電荷、自旋和軌道等自由度之間的強耦合,提供了新的視野和廣泛的研究領域,這些領域可能展現出各種異常和具有技術意義的性質,這些性質可以以相同的方式調控。這個一般概念本身即材料固有的ENZ條件的發生,使得可以實現有序參數的超快全光切換潛力巨大,能夠遠遠超越這裡所示的鐵電材料的特定案例,前提是能夠找到ENZ材料,其中使得ENZ條件發生的性質直接或間接地與需要調控的有序參數耦合。

 

參考資料:

Temnov, V.V. and Vavassori, P, "All-optical polarization switching in ferroelectrics," Nature Photonics 18, pages 529-530 (2024)
https://doi.org/10.1038/s41566-024-01452-9
DOI:10.1038/s41566-024-01452-9

 

 
 
版權所有   國立臺灣大學電機資訊學院光電工程學研究所   https://gipo.ntu.edu.tw
歡迎轉載   但請註明出處   https://gipo.ntu.edu.tw/zh_tw/NewsLetters