第204期 2024年3月刊
 
最新消息與活動公告 │ 所務公告及活動花絮 │ 教師研究成果專欄 │ 光電要聞
 
 
發行人:吳育任所長  編輯委員:曾雪峰教授  主編:林筱文  發行日期:2024.03.30
 
 

本所4月份演講公告:

 

日期 講者 講題 地點 時間
4/12

余沛慈教授
國立陽明交通大學光電工程學系

待訂 博理館
101演講廳
14:20~16:00
4/30

鄭鈺潔教授
國立臺北科技大學光電工程系

Design principles of surface relief gratings for diffractive AR waveguide displays 博理館
101演講廳
10:30~12:00

 

 
 
3月份「光電所專題演講」(整理:簡璟)
時間: 113年3月15日(星期五)下午2時20分
講者: 陳書履執行長(光程研創股份有限公司)
講題: Explore Si Photonics Beyond Communications

 

陳書履執行長(右)與本所李翔傑教授(左)合影

 

時間: 113年3月22日(星期五)下午2時20分
講者: 徐正池處長(奇景光電股份有限公司)
講題: 車載甘苦談—以車載顯示IC為例

 

徐正池處長(右)與本所李翔傑教授(左)合影

 

時間: 113年3月29日(星期五)下午2時20分
講者: 洪健翔經理(台灣超微光學股份有限公司)
講題: 商用光譜儀的設計與應用

 

洪健翔經理(右)與本所李翔傑教授(左)合影

 

 
 

Efficiency Enhancement of Photon Color Conversion from an InGaN/GaN Quantum Well into a Colloidal Quantum Dot Located in a Metal Nanotube

Professor C. C. Yang's Laboratory

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所 楊志忠教授

For implementing a surface plasmon (SP) coupling effect to enhance the efficiency of the color conversion from a blue-emitting InGaN/GaN quantum well (QW) into green- and red-emitting colloidal quantum dots (QDs), an Au sidewall layer is fabricated in a surface nanohole (NH) on a QW template to form an Au nanotube (NT) structure for accommodating the inserted QDs. The Au sidewall layer is implemented through Au deposition, followed by a secondary sputtering process in a reactive ion etching chamber. The enhanced efficiency of the Förster resonance energy transfer (FRET) from the underlying QW structure into the inserted QDs is observed, when compared with the result of a surface NH sample without Au sidewall layer. Meanwhile, with a QD inserted into an Au NT, its emission efficiency is increased, when compared to that of a QD inserted into a GaN surface NH. Those efficiency increases are caused by the SP coupling effect of the Au sidewall layer. The combined effect of the efficiency increases of FRET and QD emission leads to an enhanced color conversion process. Figures 1(a)-1(e) show the procedures for fabricating a metal nanotube (NT/QW-XXX) sample. Figure 1(f) shows the structure of a nanohole (NH/QW-XXX) sample. Figure 2 shows the TEM image of an NT/QW-XXX sample after the RIE secondary sputtering process. Here, the dark regions inside the NH correspond to the Au distribution. Table 1 shows the data of PL decay time, IQE, and FRET efficiency in various NT/QW-XXX samples, including the insertions of green QD (GQD), red QD (RQD), GQD plus RQD (GQD+RQD), and pure photoresist (PR).

 

Fig. 1. (a)-(e): Schematic illustrations of the procedures for fabricating an NT/QW-XXX sample. (f): Schematic illustration of the structure of an NH/QW-XXX sample.

Fig. 2. Cross-sectional TEM image of an NT/QW-XXX sample after the RIE secondary sputtering process.

Table 1. PL decay times of QW, GQD, and RQD emissions in those NT samples with Au sidewall layers fabricated on the QW template. The numbers inside the parentheses (curly brackets) show the QW IQEs at different fabrication stages (the FRET efficiencies from QW into QD).

 

Quasi-van der Waals epitaxy of Bi on (111) Si

Professor Hao-Hsiung Lin's Laboratory

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所 林浩雄教授

Bi is a nontrivial semimetal, with tiny negative bulk band gap and very small effective mass in certain orientations, allowing the band structure be transferred to semiconductor through quantum size effect. Because of the strong spin-orbit interaction, its surface states split into two bands with a gap of 0.8 eV, which makes it also a promising material for spintronics. In this work, Bi thin films were grown on (111) Si using MBE, and characterized using XRD, TEM, and EBSD. All the Bi films are highly (0003) textured and contain two twinning domains. The basic lattice parameters c and a as well as b, the bilayer thickness, determined from XRD for an 80-nm-thick Bi layer, are all within 0.1% as compared with those of bulk Bi, suggesting that the Bi film is nearly fully relaxed. The rapid relaxation despite the huge 18% lattice mismatch is attributed to the quasi-van der Waals bonding at the Bi/Si interface. From the XRD φ-scans of asymmetric Bi (01-14) planes and Si (220) plane, we confirmed the well registration between the lattices of Si and Bi lattice. For the ~10-nm-thick layers, a strain ~2% is observed. From (01-14) φ-scan, we observed an additional rotation phase. We proposed a preferential closed-pack A-B-C site model to explain the observed rotation phases.

 

Fig. 1. (a) Ω-2θ scan showing the nearly fully relaxed (0003) Bi phase. (b) A (01-14) ϕ-scan showing the dual-peak twinning Bi phases. One of the phases aligns the (220) of Si substrate. EBSD inverse pole figure shown in the inset, green and blue represent the regions of the two twinning phases.

Fig. 2. Two Bi atomic arrangements based on preferential site model. (a) Bi hexagonal lattice aligns Si lattice with 6aBi = 7aSi and (b) Arrangement for the rotation phase with tilted Bi hexagonal lattice and 6aBi = 7.024 aSi. The preferential sites in both figures form superlattice indicated by dashed hexagons.

 

 

 
 

— 資料提供:影像顯示科技知識平台 (DTKP, Display Technology Knowledge Platform) —

— 整理:林晃巖教授、黃茂愷 —

憶阻器相位移相器

憶阻器效應(memristor effect)的積體化相位移相器(phase shifter)已被證實運作時僅需亞皮焦耳(sub-picojoule)能量,這是降低可程式化光子電路整體能耗的重要特性。

電路調制和可程式性的相位移相器,是實現積體化光子電路的基本元件。對於許多應用來說,非揮發性的特性是一個理想的相位移相器所需要具備的,即在沒有外部控制信號(通常是偏壓)的情況下能維持其狀態。然而,傳統的非揮發性移相器,通常使用相變化材料或鐵電相作為材料,也存在響應速度慢和需要大的驅動電壓的問題。

在《Advanced Optical Materials》雜誌上發表的最新研究中(Z. Fang et al., Adv. Opt. Mater. https://doi.org/10.1002/adom.202301178; 2023),Hewlett Packard實驗室和華盛頓大學的研究人員,展示了一種基於矽上III-V族材料光子學的非揮發性相位移相器,且該元件利用了憶阻器效應。

在這項工作中,作者透過在矽基板(Si)和III-V族半導體層(磷化銦,InP)之間夾一層9.6奈米的氧化鉿(HfO2)來實現了一個憶阻器。這個憶阻器對於電壓的高低會表現出不同的狀態(如圖一)。在負偏壓下,該結構表現得像一個金屬-氧化物-半導體電容器,而在正偏壓下,氧空位的遷移創建了一個降低電阻的導電絲。透過重新施加負偏壓,憶阻器會被重置,導致導電絲斷裂。

這項研究利用憶阻器的開關能力,調節一個在矽上磷化銦的平台上實現的10微米微環諧振器(如圖二),其中包含薄薄的一層氧化鉿(HfO2)。使用持續100奈秒的電壓脈衝,實現了憶阻器在高低電阻狀態之間的切換,導致諧振波長在大約1519奈米處發生0.44奈米的位移,相當於約0.09π的相位位移。通過觀察一小時內諧振波長保持在預期的熱波動範圍內,證實了其非揮發性的特性。24小時後取得的光譜與之前能完美重疊。

考慮到開關是通過注入微安培級別的電流來實現的,且所需的開關時間約為100奈秒,作者估計開關能量低至0.4皮焦耳,遠低於其他非揮發性的相位移相器。這歸因於HfO2中導電路徑的形成僅延伸數奈米。

如圖三與四所示,這些結果透過利用憶阻器效應,為積體化光子學領域做出了貢獻,並為矽上III-V族材料在矽光子積體化平台上的快速和效能相位移動提供了希望。

 

圖一、III-V-HfO2-Si憶阻器中的寫入和讀取狀態。a)描繪了如何在磷化銦-氧化鉿-矽(InP-HfO2-Si)憶阻器中寫入狀態。HRS(高電阻狀態)和LRS(低電阻狀態)。O.V.代表氧空位。b)展示了在(a)所示狀態下讀取InP-HfO2-Si憶阻器的方式。在(i, ii, 和 iii)中施加恆定的負讀取偏壓到n型磷化銦。c)形成(綠色)、SET(橙色)和RESET(藍色)操作的電流-電壓關係圖。電壓為寫入偏壓。灰色虛線表示為防止設備損壞設定的5微安培電流限制。為了展示良好的循環性,重疊了七個I-V SET和RESET循環的圖表。

 

圖二、展示了如何使用憶阻器實現微環諧振器的非揮發性相位調節。a)展示了憶阻器微環金屬-氧化物-半導體(MOS)電容調製器的示意圖。BOX代表埋藏氧化物。S(G)分別代表信號(接地)電極。b)展示了微環的光學顯微照片。c)使用憶阻器實現微環諧振的可逆開關。開關條件為SET時7伏特、脈衝寬度200奈秒、後緣8奈秒,RESET時為-3伏特、脈衝寬度200奈秒、後緣8奈秒。d)進行了1小時的SET和RESET相位狀態的時間穩定性測試。每10秒測量一次光譜以計算諧振波長。ΔΦ表示光相位位移。在上述測量中,一直施加-3伏特偏壓,100奈安培的電流限制,以讀取光學狀態。

 

圖三、展示了憶阻器的非揮發性相位移相器的耐用性。a)針對相位移相器進行了800個連續循環或1600次開關事件的循環測試。開關條件為SET時15伏特、脈衝寬度100奈秒、後緣8奈秒,RESET時為-3伏特、脈衝寬度100奈秒、後緣8奈秒。ΔΦ表示光相位位移。b)在800個循環過程中,以-0.7伏特讀取偏壓測量憶阻器開關的同時電阻讀數。脈衝條件與(a)中相同。

 

圖四、展示了相位移相器的實時光學開關響應,在SET和RESET操作中均施加了恆定的-2伏特讀取偏壓。a)SET操作的動態過程及觸發開關的電壓脈衝。T代表微環穿孔口的傳輸率。黑色虛線指示了暫態效應消退後的光學狀態。脈衝條件為11伏特、脈衝寬度100奈秒、後緣8奈秒。b)RESET操作的動態過程及觸發開關的電壓脈衝。脈衝條件為-4.5伏特、脈衝寬度100奈秒、後緣8奈秒。

 

參考資料:

Pitruzzello, G., "Memristor phase shifters," Nature Photonics 17, page 1025 (2023)
https://doi.org/10.1038/s41566-023-01342-6
DOI:10.1038/s41566-023-01342-6

參考文獻:

Zhuoran Fang, et al., "Fast and Energy-Efficient Non-Volatile III-V-on-Silicon Photonic Phase Shifter Based on Memristors," Advanced Optical Materials 11, page 2301178 (2023)
https://doi.org/10.1002/adom.202301178
DOI:10.1002/adom.202301178

 

 
 
版權所有   國立臺灣大學電機資訊學院光電工程學研究所   https://gipo.ntu.edu.tw
歡迎轉載   但請註明出處   https://gipo.ntu.edu.tw/zh_tw/NewsLetters