第204期 2024年3月刊
 
最新消息与活动公告 │ 所务公告及活动花絮 │ 教师研究成果专栏 │ 光电要闻
 
 
发行人:吴育任所长  编辑委员:曾雪峰教授  主编:林筱文  发行日期:2024.03.30
 
 

本所4月份演讲公告:

 

日期 讲者 讲题 地点 时间
4/12

余沛慈教授
国立阳明交通大学光电工程学系

待订 博理馆
101演讲厅
14:20~16:00
4/30

郑钰洁教授
国立台北科技大学光电工程系

Design principles of surface relief gratings for diffractive AR waveguide displays 博理馆
101演讲厅
10:30~12:00
 
 
 
3月份「光电所专题演讲」(整理:简璟)
时间: 2024年3月15日(星期五)下午2时20分
讲者: 陈书履执行长(光程研创股份有限公司)
讲题: Explore Si Photonics Beyond Communications

 

陈书履执行长(右)与本所李翔杰教授(左)合影

 

时间: 2024年3月22日(星期五)下午2时20分
讲者: 徐正池处长(奇景光电股份有限公司)
讲题: 车载甘苦谈—以车载显示IC为例

 

徐正池处长(右)与本所李翔杰教授(左)合影

 

时间: 2024年3月29日(星期五)下午2时20分
讲者: 洪健翔经理(台湾超微光学股份有限公司)
讲题: 商用光谱仪的设计与应用

 

洪健翔经理(右)与本所李翔杰教授(左)合影

 

 
 

Efficiency Enhancement of Photon Color Conversion from an InGaN/GaN Quantum Well into a Colloidal Quantum Dot Located in a Metal Nanotube

Professor C. C. Yang's Laboratory

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

台湾大学光电所 杨志忠教授

For implementing a surface plasmon (SP) coupling effect to enhance the efficiency of the color conversion from a blue-emitting InGaN/GaN quantum well (QW) into green- and red-emitting colloidal quantum dots (QDs), an Au sidewall layer is fabricated in a surface nanohole (NH) on a QW template to form an Au nanotube (NT) structure for accommodating the inserted QDs. The Au sidewall layer is implemented through Au deposition, followed by a secondary sputtering process in a reactive ion etching chamber. The enhanced efficiency of the Förster resonance energy transfer (FRET) from the underlying QW structure into the inserted QDs is observed, when compared with the result of a surface NH sample without Au sidewall layer. Meanwhile, with a QD inserted into an Au NT, its emission efficiency is increased, when compared to that of a QD inserted into a GaN surface NH. Those efficiency increases are caused by the SP coupling effect of the Au sidewall layer. The combined effect of the efficiency increases of FRET and QD emission leads to an enhanced color conversion process. Figures 1(a)-1(e) show the procedures for fabricating a metal nanotube (NT/QW-XXX) sample. Figure 1(f) shows the structure of a nanohole (NH/QW-XXX) sample. Figure 2 shows the TEM image of an NT/QW-XXX sample after the RIE secondary sputtering process. Here, the dark regions inside the NH correspond to the Au distribution. Table 1 shows the data of PL decay time, IQE, and FRET efficiency in various NT/QW-XXX samples, including the insertions of green QD (GQD), red QD (RQD), GQD plus RQD (GQD+RQD), and pure photoresist (PR).

 

Fig. 1. (a)-(e): Schematic illustrations of the procedures for fabricating an NT/QW-XXX sample. (f): Schematic illustration of the structure of an NH/QW-XXX sample.

Fig. 2. Cross-sectional TEM image of an NT/QW-XXX sample after the RIE secondary sputtering process.

Table 1. PL decay times of QW, GQD, and RQD emissions in those NT samples with Au sidewall layers fabricated on the QW template. The numbers inside the parentheses (curly brackets) show the QW IQEs at different fabrication stages (the FRET efficiencies from QW into QD).

 

Quasi-van der Waals epitaxy of Bi on (111) Si

Professor Hao-Hsiung Lin's Laboratory

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

台湾大学光电所 林浩雄教授

Bi is a nontrivial semimetal, with tiny negative bulk band gap and very small effective mass in certain orientations, allowing the band structure be transferred to semiconductor through quantum size effect. Because of the strong spin-orbit interaction, its surface states split into two bands with a gap of 0.8 eV, which makes it also a promising material for spintronics. In this work, Bi thin films were grown on (111) Si using MBE, and characterized using XRD, TEM, and EBSD. All the Bi films are highly (0003) textured and contain two twinning domains. The basic lattice parameters c and a as well as b, the bilayer thickness, determined from XRD for an 80-nm-thick Bi layer, are all within 0.1% as compared with those of bulk Bi, suggesting that the Bi film is nearly fully relaxed. The rapid relaxation despite the huge 18% lattice mismatch is attributed to the quasi-van der Waals bonding at the Bi/Si interface. From the XRD φ-scans of asymmetric Bi (01-14) planes and Si (220) plane, we confirmed the well registration between the lattices of Si and Bi lattice. For the ~10-nm-thick layers, a strain ~2% is observed. From (01-14) φ-scan, we observed an additional rotation phase. We proposed a preferential closed-pack A-B-C site model to explain the observed rotation phases.

 

Fig. 1. (a) Ω-2θ scan showing the nearly fully relaxed (0003) Bi phase. (b) A (01-14) ϕ-scan showing the dual-peak twinning Bi phases. One of the phases aligns the (220) of Si substrate. EBSD inverse pole figure shown in the inset, green and blue represent the regions of the two twinning phases.

Fig. 2. Two Bi atomic arrangements based on preferential site model. (a) Bi hexagonal lattice aligns Si lattice with 6aBi = 7aSi and (b) Arrangement for the rotation phase with tilted Bi hexagonal lattice and 6aBi = 7.024 aSi. The preferential sites in both figures form superlattice indicated by dashed hexagons.

 

 
 
 

— 资料提供:影像显示科技知识平台 (DTKP, Display Technology Knowledge Platform) —

— 整理:林晃岩教授、黄茂恺 —

忆阻器相位移相器

忆阻器效应(memristor effect)的积体化相位移相器(phase shifter)已被证实运作时仅需亚皮焦耳(sub-picojoule)能量,这是降低可程序化光子电路整体能耗的重要特性。

电路调制和可程序性的相位移相器,是实现积体化光子电路的基本组件。对于许多应用来说,非挥发性的特性是一个理想的相位移相器所需要具备的,即在没有外部控制信号(通常是偏压)的情况下能维持其状态。然而,传统的非挥发性移相器,通常使用相变化材料或铁电相作为材料,也存在响应速度慢和需要大的驱动电压的问题。

在《Advanced Optical Materials》杂志上发表的最新研究中(Z. Fang et al., Adv. Opt. Mater. https://doi.org/10.1002/adom.202301178; 2023),Hewlett Packard实验室和华盛顿大学的研究人员,展示了一种基于硅上III-V族材料光子学的非挥发性相位移相器,且该组件利用了忆阻器效应。

在这项工作中,作者透过在硅基板(Si)和III-V族半导体层(磷化铟,InP)之间夹一层9.6奈米的氧化铪(HfO2)来实现了一个忆阻器。这个忆阻器对于电压的高低会表现出不同的状态(如图一)。在负偏压下,该结构表现得像一个金属-氧化物-半导体电容器,而在正偏压下,氧空位的迁移创建了一个降低电阻的导电丝。透过重新施加负偏压,忆阻器会被重置,导致导电丝断裂。

这项研究利用忆阻器的开关能力,调节一个在硅上磷化铟的平台上实现的10微米微环谐振器(如图二),其中包含薄薄的一层氧化铪(HfO2)。使用持续100奈秒的电压脉冲,实现了忆阻器在高低电阻状态之间的切换,导致谐振波长在大约1519奈米处发生0.44奈米的位移,相当于约0.09π的相位位移。通过观察一小时内谐振波长保持在预期的热波动范围内,证实了其非挥发性的特性。24小时后取得的光谱与之前能完美重迭。

考虑到开关是通过注入微安培级别的电流来实现的,且所需的开关时间约为100奈秒,作者估计开关能量低至0.4皮焦耳,远低于其它非挥发性的相位移相器。这归因于HfO2中导电路径的形成仅延伸数奈米。

如图三与四所示,这些结果透过利用忆阻器效应,为积体化光子学领域做出了贡献,并为硅上III-V族材料在硅光子积体化平台上的快速和效能相位移动提供了希望。

 

图一、III-V-HfO2-Si忆阻器中的写入和读取状态。a)描绘了如何在磷化铟-氧化铪-硅(InP-HfO2-Si)忆阻器中写入状态。HRS(高电阻状态)和LRS(低电阻状态)。O.V.代表氧空位。b)展示了在(a)所示状态下读取InP-HfO2-Si忆阻器的方式。在(i, ii, 和 iii)中施加恒定的负读取偏压到n型磷化铟。c)形成(绿色)、SET(橙色)和RESET(蓝色)操作的电流-电压关系图。电压为写入偏压。灰色虚线表示为防止设备损坏设定的5微安培电流限制。为了展示良好的循环性,重迭了七个I-V SET和RESET循环的图表。

 

图二、展示了如何使用忆阻器实现微环谐振器的非挥发性相位调节。a)展示了忆阻器微环金属-氧化物-半导体(MOS)电容调制器的示意图。BOX代表埋藏氧化物。S(G)分别代表信号(接地)电极。b)展示了微环的光学显微照片。c)使用忆阻器实现微环谐振的可逆开关。开关条件为SET时7伏特、脉冲宽度200奈秒、后缘8奈秒,RESET时为-3伏特、脉冲宽度200奈秒、后缘8奈秒。d)进行了1小时的SET和RESET相位状态的时间稳定性测试。每10秒测量一次光谱以计算谐振波长。ΔΦ表示光相位位移。在上述测量中,一直施加-3伏特偏压,100奈安培的电流限制,以读取光学状态。

 

图三、展示了忆阻器的非挥发性相位移相器的耐用性。a)针对相位移相器进行了800个连续循环或1600次开关事件的循环测试。开关条件为SET时15伏特、脉冲宽度100奈秒、后缘8奈秒,RESET时为-3伏特、脉冲宽度100奈秒、后缘8奈秒。ΔΦ表示光相位位移。b)在800个循环过程中,以-0.7伏特读取偏压测量忆阻器开关的同时电阻读数。脉冲条件与(a)中相同。

 

图四、展示了相位移相器的实时光学开关响应,在SET和RESET操作中均施加了恒定的-2伏特读取偏压。a)SET操作的动态过程及触发开关的电压脉冲。T代表微环穿孔口的传输率。黑色虚线指示了瞬时效应消退后的光学状态。脉冲条件为11伏特、脉冲宽度100奈秒、后缘8奈秒。b)RESET操作的动态过程及触发开关的电压脉冲。脉冲条件为-4.5伏特、脉冲宽度100奈秒、后缘8奈秒。

 

参考资料:

Pitruzzello, G., "Memristor phase shifters," Nature Photonics 17, page 1025 (2023)
https://doi.org/10.1038/s41566-023-01342-6
DOI:10.1038/s41566-023-01342-6

参考文献:

Zhuoran Fang, et al., "Fast and Energy-Efficient Non-Volatile III-V-on-Silicon Photonic Phase Shifter Based on Memristors," Advanced Optical Materials 11, page 2301178 (2023)
https://doi.org/10.1002/adom.202301178
DOI:10.1002/adom.202301178

 
 
 
版权所有   国立台湾大学电机信息学院光电工程学研究所   https://gipo.ntu.edu.tw
欢迎转载   但请注明出处   https://gipo.ntu.edu.tw/zh_tw/NewsLetters