第198期 2023年8月刊
 
最新消息与活动公告 │ 教师研究成果专栏 │ 光电所博士班应届毕业生研究成果专栏 │ 光电要闻
 
 
发行人:吴育任所长  编辑委员:曾雪峰教授  主编:林筱文  发行日期:2023.08.30
 
 

本所李翔杰教授荣获「国科会2023年度吴大猷先生纪念奖」,特此恭贺!

 
 
 

The Progress in the Colloidal Quantum Dot Based Color Conversion Layer

Professor Chien-chung Lin

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

台湾大学光电所 林建中教授

The progress in the past few years has put micro LED and related technologies in the roadmap for the next generation of smart displays. One of the key issues is the realization of a full-color display with a reasonable power consumption and footprint. The color conversion mechanism was often discussed in this direction and several labs around the world have demonstrated that this is feasible. There are many examples that can show great effects of color conversion: phosphors, chemical dyes, light emitting organic materials or inorganic colloidal quantum dots (CQDs). Although these materials can usually reach a conversion efficiency of 60 or 70% or even higher, the incapability of micro-pattern has become a major problem for all. In order to pattern them into an array of pixels, we have to either cast these materials accurately one by one or to mix them with photosensitive resin. Either way takes tremendous efforts to achieve good results. Among these color conversion materials, colloidal quantum dots are very promising due to their high conversion efficiency and small sizes. In our lab, we focus on two methods of these nanoparticles [1-3]: direct dispense and mixing CQD with photoresist. With the collaboration between our lab and the ITRI team, we demonstrated several different results of CQDs with micro LEDs previously [1-3].

 

Fig. 1. (a) arrays of CQD pixels under the FLOM [4]; (b) the experimental setup [4].

Recently, the team from GIPO (Prof. Chung-Chih Wu and us) and from NYCU(阳明交通大学)worked together to demonstrate a semiconductor grade color conversion layer [4]. The distance between the pixels can be determined by the semiconductor grade of process which can improve the accuracy of the array greatly. The direct dispense method can ensure the highest concentration of CQDs presenting in each pixel. At the same time, we applied a reflective mirror on the top of this color conversion layer to enhance the photon recycling and a more-than-35% increase of CQD emission peak intensity was recorded. The corresponding numerical model was also developed under the incoherent reflection and transmission consideration. The result was just published in IEEE Photonics Journal and its website is: https://ieeexplore.ieee.org/abstract/document/10149805.

 

Reference:
[1] K.-L. Liang, W.-H. Kuo, H.-T. Shen, P.-W. Yu, Y.-H. Fang, and C.-C. Lin, "Advances in color-converted micro-LED arrays," Japanese Journal of Applied Physics, vol. 60, no. SA, p. SA0802, 2020/10/16 2020, doi: 10.35848/1347-4065/abba0f
[2] C.-C. Lin, K.-L. Liang, W.-H. Kuo, H.-T. Shen, C.-I. Wu, and Y.-H. Fang, "Colloidal Quantum Dot Enhanced Color Conversion Layer for Micro LEDs," IEICE Transactions on Electronics, vol. E105.C, no. 2, pp. 52-58, 2022, doi: 10.1587/transele.2021DII0005
[3] Y.-M. Huang et al., "The Aging Study for Fine Pitch Quantum-Dot Array on LEDs," in Conference on Lasers and Electro-Optics, San Jose, California, 2019/05/05 2019: Optical Society of America, in OSA Technical Digest, p. SF2O.2, doi: 10.1364/CLEO_SI.2019.SF2O.2
[4] G. Y. Lee et al., "Photonic Characterization and Modeling of Highly Efficient Color Conversion Layers With External Reflectors," IEEE Photonics Journal, vol. 15, no. 4, pp. 1-10, Art no. 2201110, 2023, doi: 10.1109/JPHOT.2023.3285667

 

 
 
 

论文题目:以同调声子探讨二维二硫化钼接口之凡德瓦力弹性耦合与光声换能器之应用

姓名:王鹏瑞   指导教授:孙启光教授

 

摘要

二维材料之间的凡德瓦力耦合现象,影响了二维光电组件的诸多特性,因此若能针对凡德瓦接口的质量进行非破坏性的侦测,对于未来的大面积合成是重要的。在本研究中,我们以预镀过渡金属再硫化的技术制备单层与数层的二硫化钼,并利用皮秒超声波技术探索其与转贴之后的凡德瓦界面之特性。本论文的目标是以同调声子揭露二硫化钼其层间凡德瓦力的关键参数,转贴于氮化镓基板以实现其作为光声换能器的用途,并探讨该第二型异质接面之间的电荷转移与热声子的形成机制。藉由超快激光对双层与三层的二硫化钼进行激发-探测实验,我们精确测量了所有呼吸模态,引入基板弹性耦合与次近邻交互作用的模型以计算接口之间的凡德瓦力强度,而进一步考虑了层内之强共价键结的弹性串联,我们提供更深一层的修正模型。在转贴二硫化钼于氮化镓基板上所形成的第二型异质接面,我们在其载子动力学讯号中发现了布里渊震荡,证实了该界面向基板内发出了声学声子。藉由量子阱作为光声换能器,我们在时域上量测了其兆赫声学音波,其形似一个非对称的双极波型。最后我们建立了一系列的理论解释该特殊波形的形成机制,并藉由实验数据与仿真的拟合,提供了如电子-声子耦合与电荷转移等诸多关键参数。

图一、(a) 双层与三层MoS2样品之TEM影像。(b) 以飞秒激光进行激发-探测实验示意图。(c) 移除背景讯号后显示的震荡对光学讯号之调变。(d) 频谱分析显示所有呼吸模态。

图二、(a) 兆赫音波激发与侦测区域之示意图。(b) 异质接面产生的应变波之周期性光学干涉形成了布里渊震荡。(c) 由上到下分别为转贴后的呼吸模态、MoS2/GaN接口产生的音波、与量子阱发出之脉冲音波。

 

 
 
 

— 资料提供:影像显示科技知识平台 (DTKP, Display Technology Knowledge Platform) —

— 整理:林晃岩教授、林珈庆 —

大量的超颖透镜

超颖透镜(Metalenses)利用次波长结构化表面,提供优于传统透镜的紧凑对焦平台,具有超越尺寸的优势,例如减少色差。然而,超颖透镜的商业可行性取决于克服制造方面成本的挑战。

 

图 1. 使用氟化氩(ArF)沉浸式扫描仪进行高效能可见光超颖透镜的大规模生产。a. 超颖透镜的制作流程;b. 十二英吋晶圆;c. f. 单元超颖透镜;d. e. g. 单元超颖透镜之部分结构。

现在,来自韩国的 Joohoon Kim、Junhwa Seong、Wonjoong Kim 及其同事已经展示了大孔径可见光超颖透镜之低成本与高输出率的大规模生产(Nat. Mater. 22, p. 474–481, 2023)。这种方法结合了193奈米波长的深紫外氟化氩沉浸式光微影、晶圆尺度的奈米压印微影以及由混合原子层-聚合物树脂组成的高折射率材料。一个印制的12英吋主模具(如图1b所示)实现了厘米尺度超颖透镜的大规模数组制造。最后,团队还展示了一个原型超颖透镜积体化的虚拟现实平台,能够以红、绿、蓝三种颜色显示虚拟影像。

该研究的通讯作者之一 Junsuk Rho 解释了这项工作的动机是为了开发一种真正低成本、高透光且可扩展的超颖透镜制造方法,尤其是在可见光波长频段下需要小于100奈米分辨率制造的。Rho 提到,虽然电子束微影提供了足够的分辨率,但这种方法昂贵、耗时,且对于大面积制造不实用。他还解释说,奈米压印微影是一个选择,但问题在于树脂的折射率;只有少数材料可以使用,且它们的折射率相对较低。

Rho告诉《Nature Photonics》说:「我们先前透过将压印的树脂本身作为超颖原子来简化制程,但树脂的折射率(约为1.5)通常太低,无法应用于可见光的超颖表面。」他继续说:「为了解决这个问题,我们使用原子层沉积技术,在超颖原子上涂上一层薄薄的高折射率二氧化钛(TiO2)薄膜,以增强超颖原子的双折射效应,从而使转换效率大幅提高(从10%增加到90%)。这层二氧化钛薄膜只有约20奈米厚度。」

根据Rho的说法,其中一个挑战是压印后残留层的问题。Rho解释说:「残留层可能对于所制作的组件的目的或功能方面至关重要。」他补充道:「此外,我们的方法仍然依赖电子束微影技术来创建最初的4厘米尺寸光罩,因此还需要解决对电子束微影的依赖问题。」

这个制程与CMOS制程兼容,可能适用于各种基板。此外,主模具和压印模具可重复使用超过20次。最后,Rho指出这种方法可以扩展到制作紫外和深紫外超颖表面,这在高分辨率成像、光学微影和生物感测方面可以发挥作用。

 

参考资料:

Pile, D., "Masses of metalenses," Nature Photonics 17, pages 467 (2023)
https://doi.org/10.1038/s41566-023-01221-0
DOI:10.1038/s41566-023-01221-0

参考文献:

Joohoon Kim, Junhwa Seong, Wonjoong Kim, Gun Yeal Lee, Seokwoo Kim, Hongyoon Kim, Seong Won Moon, Dong Kyo Oh, Younghwan Yang, Jeonghoon Park, Jaehyuck Jang, Yeseul Kim, Minsu Jeong, Chanwoong Park, Hojung Choi, Gyoseon Jeon, Kyung il Lee, Dong Hyun Yoon, Namkyoo Park, Byoungho Lee, Heon Lee, Junsuk Rho, "Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible," Nat. Mater. 22, pages 474–481 (2023)
https://doi.org/10.1038/s41563-023-01485-5
DOI:10.1038/s41563-023-01485-5

 
 
 
版权所有   国立台湾大学电机信息学院光电工程学研究所   https://gipo.ntu.edu.tw
欢迎转载   但请注明出处   https://gipo.ntu.edu.tw/zh_tw/NewsLetters