第七十九期 2012年9月刊
 
 
 
發行人:林清富所長  編輯委員:陳奕君教授  主編:林筱文  發行日期:2012.09.20
 
 

 本所何志浩副教授指導光電所碩士生林冠中榮獲「101年度臺大科林論文獎—碩士論文頭等獎」,特此恭賀!

 

 
 
 
Theoretical Study of Surface Plasmon Coupling between a Radiating Dipole and a Metal Nanoparticle

Professor Y. W. Kiang’s Laboratory

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所 江衍偉教授

We report the theoretical and numerical study results of surface plasmon (SP)-dipole coupling based on a simple coupling model between a radiating dipole and the SP induced on a nearby Ag nanoparticle (NP). To include the dipole strength variation effect caused by the field distribution built in the coupling system (the feedback effect), the radiating dipole is represented by a saturable two-level system. The spectral and dipole-NP distance dependencies of dipole strength variation and total radiated power enhancement of the coupling system are demonstrated and interpreted. The results show that the dipole-SP coupling can enhance the total radiated power. The enhancement is particularly effective when the feedback effect is included and hence the dipole strength is increased. Figure 1 shows the geometry of the dipole-NP system, including a spherical Ag NP with radius R (=10 nm) centered at the coordinate origin and a radiating dipole located at (0, 0, a), which is represented by an arrow. Figure 2 (3) shows the dipole strength enhancement ratios, , of the x-oriented (z-oriented) dipole as functions of wavelength when the distance between the dipole and the Ag NP center, a, varies from 40 through 120 nm. Figure 4 (5) shows the total radiated power enhancement ratios as functions of wavelength at several a values for the x-oriented (z-oriented) dipole. The power ratio is defined as the total radiated power of the dipole-NP system over that in the case without the Ag NP.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

 

Structural properties of InAsPSb grown on GaAs

Professor Hao-Hsiung Lin

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所 林浩雄教授

Previous studies have shown that bonds in alloy resemble their original lengths in binaries. Quaternary InAsPSb contains two bonds, InP and InSb, that are with very large mismatch in length. This mismatch leads to strong bond distortion in the quaternary, which could affect the structural, electronic and optical properties. In this work, we investigate the structural properties of InAsPSb grown on GaAs substrate using reciprocal space mapping (RSM) and P K-edge and In K-edge extended X-ray absorption fine structure (EXAFS). Valence force field (VFF) is used to simulate the bond distortion in the quaternary. Fig. 1 shows the Fourier transformed In K-edge EXAFS signals. Two peaks representing InP and InSb bonds are clearly seen when As composition is low and gradually merge into a broad peak with the increasing As composition. Detailed analysis show that the bond lengths are close to their original values in binaries. Fig. 2 shows RSM results of a InAsPSb samples. Although the lattice mismatch between of these alloys and GaAs is ~7% and the layer thicknesses are 1000 times thicker than the critical thicknesses, strong residual strain exists in these layers. We used VFF model to calculate the bond distortion. Fig. 3 shows the distortion energy as a function of az/axy for each sample. As can be seen, the distortion energy is much larger than the strain energy and the residual strain, in term of az/axy ratio, is proportional to the distortion energy. This finding suggests that the randomly oriented bond distortion could hinder the generation of dislocation in the alloy, leading to the observed residual strain.

Fig. 1 Fourier transformed In K-edge EXAFS signal of InAsPSb. Fig. 2 (004) and (-1-15) RSM measurements of InAs0.04P0.73Sb0.23 show a az/axy ratio of 1.017, resulting from the residual strain in the 1-mm-thick sample.
 

Fig. 3 Distortion energy as functions of az/axy for InAsPSb alloys. Symbols indicate the az/axy ratio obtained from RSM measurement for each samples.

 

     
 
 
論文題目:砷化銦鎵量子點微碟雷射之研究

姓名:錢皓哲   指導教授:毛明華教授

 

摘要

微碟(microdisk)共振腔由於其迴音廊模態(whispering gallery mode)有良好的空間侷限性,因此擁有高品質係數與低模態體積之特性,結合量子點主動材料,可在砷化鎵材料系統實現光纖通訊用長波長雷射,並具有低臨界電流之潛力。

在我們的研究中,我們實現了品質係數高達14000的光激發式微碟共振腔雷射,我們也利用兩段式濕式蝕刻技術製作直徑約為3微米的微碟雷射,成功減少了模態的數量。在電注入式微碟共振腔雷射的製作上,我們採取的是苯環丁烯聚合物包覆下的平坦化製程,並且透過光學量測,實現了世界上第一個室溫下操作的量子點電注入式微碟共振腔雷射,其SEM圖如圖一所示,室溫下最低的臨界電流是0.45毫安培,其元件直徑是6.5微米。我們另外對電注入式微碟共振腔雷射討論其動態的特性。在室溫下電注入式微碟共振腔雷射暫態行為的量測中,我們發現微碟雷射的起始時間很短暫,並且沒有觀察到弛逸震盪的現象,在大訊號直接調變的實驗下,我們展示了此元件作為1 Gbps調變的可能(如圖二),並且證實了此元件可以應用在高度積體化光收發器模組中,做為高頻調變與單模操作的雷射光源。

圖一

圖二

 

 

論文題目:氧化鎘鋅/氧化鋅量子井生長、特性分析及發光二極體應用

姓名:丁紹瀅   指導教授:楊志忠教授


摘要

在本研究中,我們使用分子束磊晶(Molecular-Beam Epitaxy)技術於p型氮化鎵(p-GaN)上成長氧化鎘鋅/氧化鋅(CdZnO/ZnO)多層量子井發光二極體結構。在結構表面有些V型凹陷存在,這顯示在其底下存有貫穿式差排(threading dislocation),為了降低此漏電流通道,我們使用二氧化矽奈米顆粒將這些凹陷填滿,並製作側向式發光二極體(如圖一(a))。量測結果發現元件開啟電壓為4伏特,元件電阻為224歐姆。另外我們製作出垂直式氧化鋅/氧化鎘鋅量子井發光二極體元件(如圖一(b)),我們拿它與側向式發光二極體來做比較,發現垂直式發光二極體有較低的元件電阻、更小的漏電流、較弱的輸出強度飽和、較高的光輸出強度以及相對低的缺陷放光(如圖二)。

圖一:(a)垂直式氧化鋅發光二極體結構 (b)側向式氧化鋅發光二極體結構

圖二:垂直式發光二極體與側向式發光二極體的I-V量測曲線與在20mA輸入電流下的照片

 

 
 
 

— 資料提供:影像顯示科技知識平台 (DTKP, Display Technology Knowledge Platform) —

— 整理:林晃巖教授、陳聖灝 —

奈米塑形的新方法

在過去的幾十年內,奈米線特殊的光學、電子與機械性質在科學與技術上皆引起研究人員的強烈興趣。奈米線的特性可透過後處理(post-processing)技術調整,例如:彎曲、形變、切割以及改變形狀,藉此提供我們可控制如:應變工程、電子傳輸、機械特性、能帶結構與量子特性等功能。然而現今塑形奈米線的技術受限於其可縮放比例,例如:雖然可藉由原子力顯微鏡尖端,以抓住與彎曲奈米線,但必須一個區段接著一個區段做處理,因此較難以製作出複雜的形狀。

Ji Li與美國普渡大學(Purdue University)的同事發展出基於雷射衝擊(laser-shock-based)的技術作為具有可縮放比例與可控制的奈米線塑形方法(Nano Lett. 12, 3224–3230; 2012)。此研究的架構是由玻璃侷限層(confinement layer)、石墨腐蝕塗層(graphite ablative coating layer) 、超薄金屬箔層、彈性材料層、對準之銀奈米線與矽奈米鑄模組合而成(見圖 1 (a))。他們使用「氣-液-固」製程合成直徑約100奈米之單晶奈米線。並使用強度0.07–0.2 GW cm−2 的5奈秒雷射脈衝照射目標物使腐蝕塗層汽化成電漿。這些擴大的電漿由侷限層彈回產生600–1000百萬帕(MPa)的強大衝擊壓力,足以塑形金屬箔層,也因此可將下方的奈米線壓至模具上(見圖 1 (b))。

藉由調整製程的條件,如:雷射強度、基材材質與模具形狀。研究人員成功地展示保形塑形(conformal shaping)、均勻彎曲與切割的銀奈米線(見圖 1 (d)-(h))。以保形塑形來說,常見的特徵尺寸為80奈米而深度為60奈米。根據研究人員表示,橫向壓縮的銀奈米線的方式可藉由在平坦表面的模具上達成(見圖 1 (j)-(k))。

Ji Li 等人也使用穿透式電子顯微鏡研究側向壓縮的銀奈米線微觀結構的變化。他們發現在開始壓縮時,奈米線的表面會有高密度的成對形變(deformation twins) ,且在壓縮之後移動到內部。而這個「契合邊界」(coherent boundary)對電阻率有微小的影響;成對形變的發現支持在雷射衝擊形成前後銀奈米線可忽略電子特性變化的說法。

研究人員指出,這個新的奈米塑形技術可控制在常溫常壓下,同時也可使用於不同的材質,包含半導體如矽與鍺等。

 

圖 1、以雷射衝擊控制奈米線之形成:(a)不同層的組合元件圖。(b)雷射衝擊形成的過程。(c)原始銀奈米線的SEM圖與矽模子的陣列通道。(d)保形(conformal)奈米線的過程圖。(e) 保形銀奈米線的SEM圖。(f)有一致彎曲之奈米線的過程圖。(g)彎曲之鍺奈米線的SEM圖。(h)奈米線切割過程圖。(i)銀奈米線切割的SEM圖。(j)橫向壓縮奈米線的過程圖。(k)壓縮的銀奈米線SEM圖。

 

資料來源: Nature Photonics 6,508 (2012), Published Date(Online): 31 July 2012,
DOI:10.1038/nphoton.2012.186
  http://www.nature.com/nphoton/journal/v6/n8/full/nphoton.2012.186.html
參考資料 Ji Li, Yiliang Liao, Sergey Suslov, and Gary J. Cheng, “Laser Shock-Based Platform for Controllable Forming of Nanowires,” pp 3224–3230 Publication Date (Web): May 17, 2012 (Letter) DOI: 10.1021/nl3012209
http://pubs.acs.org/doi/abs/10.1021/nl3012209
   
 
 
 
版權所有   國立臺灣大學電機資訊學院光電工程學研究所   http://gipo.ntu.edu.tw/
歡迎轉載   但請註明出處   http://gipo.ntu.edu.tw/monthly.htm/