第七十八期 2012年8月刊
 
 
 
发行人:林清富所长  编辑委员:陈奕君教授  主编:林筱文  发行日期:2012.08.20
 
 

 

~ 2012学年度光电所所学会会长自我介绍 ~

光电所的各位师长、所办同仁以及同学大家好,很高兴能够担任2012学年度的光电所所学会会长,能为各位服务是我的荣幸。我是陈奕均,名字恰与所上的陈奕君教授差一个字,不过陈奕君教授是取得普林斯顿大学学位的PHD,而我只是个普林含量太高的食物不能吃太多的PHD候选人,目前正向博二的路迈进,目前在林晃岩教授的显示光学实验室下进行研究,研究室位于电机二馆的351A,欢迎各位同学不论是学业上有问题或者对光电所有任何的不熟悉都可以来找我聊聊。

「感觉上,台大的学生好像都不太管自己以外的事物,尤其是研究生,好像都只埋首于自己的研究中 。」,这是去年参与教育评鉴时,评鉴委员对我说的一句话,其实我是个沉默寡言、害羞木讷、不太会与人相处的人,就因为这席话促使我积极地参与所学会事务,积极地去与同学互动,因此所上举办的光电营队活动、迎新餐会,或是球类竞技大赛我都有凑上一脚,也参加了去年的光电所与南京大学的学术交流。增进所上同学彼此间的交流是我想要达成的目标,在研究之余也别忘了与同学之间出去活动活动,希望大家在离开光电所后不仅仅只记得自己实验室的同学,还能够跟其它实验室的同学、学长姐互相联络,建立良好的互动关系。

最后套句林清富所长的口号:"light is everywhere",奕均在这学年也会带着诚意地在everywhere为各位服务。

 

~ 光电所2012年暑期大学生光电营  花絮报导 ~

(时间:2012年7月17日至7月19日;地点:台湾大学博理馆

花絮整理:所学会会长陈奕均

这次是我第二次参加光电所举办的大学生暑期光电营队,第一次参加是负责带领同学进行实验室参访,这次则是以新任光电所所学会会长的身份陪同同学们进行为期三天的营队活动,由于前晚感到兴奋异常睡不着,结果第一天的报到我就迟到了...。

第一天由副所长吴志毅教授的光电科技简介开始,包含了有机与无机的LED照明、显示器、太阳能电池以及光通讯等相关的说明,也对未来的产业动向做了简单的分析,给同学们后续演讲卖了一些关子。接续由陈奕君教授所带来的太阳能电池演讲展开一连串深入的探讨,在中间的休息时间,陈奕君教授也带着各位同学至博理馆顶楼去看实际的太阳能电池模块,与同学做实际的介绍说明。在简单的休息过后,由林晃岩教授带来显示器的相关介绍,包含近期热门的立体三D显示技术等等。在中午用餐后,为了连接下午的光电实验室介绍,负责大学部光电实验课程的林晃岩教授再次粉墨登场介绍,这时我已前往电机一馆的光电实验室为下午的实验进行设置,并与其它两位助教着手实验介绍。

实验室的参访包含电机二馆部分实验室的参观与无尘室简介,另外就是电机一馆的光电实验实际操作说明,与同学们在实验介绍的过程中聊了开来,发现来的同学包含了电机系、资工系、化工系、海洋工科以及直接相关的光电系等等不同领域的学科,大家都对光电产业有着不同的期待而来参加本次的光电营。

第二天的行程我们就直接前往新竹科学园区一探光电产业的究竟,首先要感谢晶元光电与友达光电的协助,让本次公司参访得以成行。首先我们先前往的是晶元光电的本部,负责这次活动的是美女姊姊王郁婷经理,除了生产线外,对公司内部的环境以及员工关系做了非常详细的介绍,尤其是美女姊姊负责的员工关系室,更是让人感受到晶元光电对员工的照顾真是无微不至,美女姊姊表示engagement便是此一关系最佳的写照,而在参访后的用餐过程中同学们与主管们的讨论十分热络,相信大家都有不少的收获。接着我们就前往友达光电,感谢李国慈小姐顶着怀胎不知几月的肚子还陪同着我们,负责开场的是毛哥(据本人要求这样称呼比较亲切),一开始他就给我们来了一课,让同学开始脑力激荡要如何能够再兴未来的面板产业,之后便带我们去参观员工休息活动中心提供的各项运动设施,而后续在产品展示空间由AC技术处—先进制程部的李明贤副理为同学们做各个尺寸面板的介绍后,便驱车回公馆结束今天的行程。

最后一天由黄建璋教授打头阵介绍固态照明技术,在昨日参访晶元光电后同学们对固态照明的介绍更能够体会个中奥妙。接续由黄鼎伟教授介绍光通讯技术以及孙家伟教授介绍生医光电作为本次光电营演讲的收尾。在简单用餐后,光电所的大家长林清富所长前来与各位同学做面对面的交流,问答时间同学们更是踊跃地发问,最后所长更亲力亲为地将结训证书一张张地发给各位同学并握手合照,相信本次参与营队的同学们定能收获良多。

最后感谢所办姚力琪小姐以及偕同帮忙的陈圣灏、沈家宇、吴尔轩、张晏硕以及曾培瑜同学让本次活动顺利完成。

 

 
 
Combined Experimental and Theoretical Studies on II-VI Ternary CdSeTe and CdZnTe Alloys

Professor Zhe-Chuan Feng

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

台湾大学光电所 冯哲川教授

The optical, structural, and electrical properties of luminescent II-VI compound semiconductors with bandgap energies ranging from 0 to 4 eV are appealing for ultrasensitive multiplexing/multicolor applications in a variety of emerging areas of biotechnology, nanoscale optoelectronics, and nanophotonics. By varying the composition and controlling the lattice constants in ternary or quaternary alloys, we can achieve greater flexibility of tuning emission and absorption wavelengths for high-efficiency solid-state light emission sources. Earlier, the applications of II-VI materials for photonic devices were hampered primarily by the availability of poor-quality crystals and the difficulty of managing doping. Progress in the modern crystal growth techniques such as metalorganic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) etc., has offered higher quality and greater versatility in the preparation of thin films with controlled doping on many convenient substrates.

CdSexTe1-x is the II-VI-VI ternary compound, possesses a zinc-blende structure for x<0.36. The ability to prepare zinc–cadmium (mercury)–based binary [AB, with lended A = Zn, Cd, and Mn (Hg) and B = S, Se, and Te] compounds and thin films of ternary A1−xBxC (e.g., Cd1−xZnxTe, CdTe1−xSex, etc.) or quaternary A1−x−yBxCyD (e.g., Cd1−x−yZnxMnyTe, CdSexSyTe1−x−y , etc. where C and D can be the elements of the binary compound AB) alloys with precise chemical compositions x, y has now opened up many possibilities of using II-VI materials in various technological applications.

We have measured far-infrared (FIR) reflectance spectra for CdSeTe and CdZnTe alloys, as shown above, and in collaboration with Prof. Devki Talwar, an excellent theorist, also theoretical calculations on their phonon dispersions, as shown below [1]. Further, to II-VI compound semiconductors, we have used a comprehensive Green’s function theory to study the vibrational properties of isotopic defects and to ascertain the microstructure of complex centers involving dopants and intrinsic impurities. [2]

[1] Devki N Talwar, Tzuen-Rong Yang, Zhe Chuan Feng and P. Becla, “Infrared reflectance and transmission spectra in II-VI alloys and superlattices”, Physical Review B 84, 174203 (2011).
[2] Devki N. Talwar, Zhe Chuan Feng and Tzuen-Rong Yang, “Vibrational signatures of isotopic impurities and complexes in II-VI compound semiconductors”, Physical Review B 85, 195203 (2012).

 

Determination of Surface Plasmon Modes and Guided Modes Supported by Periodic Subwavelength Slits on Metals Using a Finite-Difference Frequency-Domain Method Based Eigenvalue Algorithm

Professor Hung-chun Chang

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

台湾大学光电所 张宏钧教授

An eigenvalue solution algorithm is formulated based on the finite-difference frequency-domain (FDFD) method for determining guided modes, including the surface plasmon modes, supported by periodic metallic structures. The Yee-mesh grids which have been popularly adopted in the finite-difference time-domain (FDTD) method are used in the FDFD method and standard eigenvalue matrix equations are obtained for easily searching for the guided eigenmodes. Both two-dimensional (2-D) and three-dimensional (3-D) structures are considered and the periodicity is along the propagation direction. The metals are assumed to be perfect ones or real ones without loss. For 2-D structures, an array of grooves drilled in a perfect conductor and a real-metal structure with a periodic arrangement of subwavelength slits in air are analyzed and the dispersion diagrams and mode-field profiles are obtained. For the latter structure, surface plasmon modes and dielectric slab modes are identified to be in agreement with published results based on a different numerical scheme. This subwavelength-slit structure is then extended to a 3-D one having an additional depth and it is demonstrated that the formulated algorithm can solve the same two kinds of modes for the more complicated 3-D problem. The modes guided along drilled periodic rectangle holes on a perfect conductor surface are also calculated. (IEEE/OSA Journal of Lightwave Technology, vol. 30, no. 1, pp. 76–83, 1 January 2012.)

Fig. 1. (a) Schematic of the 3-D structure generalized from the 2-D periodic arrangement of subwavelength slits. (b) Schematic of the three sides of one metallic block in the x-z, x-y, and y-z planes.

 

Fig. 2. Dispersion diagram of the guided modes on the structure of Fig. 1. The red solid lines represent surface plasmon modes and the blue solid lines represent a series of effective dielectric slab modes. The right panel is the expanded view for more clear visualization of the surface plasmon modes.

 

Fig. 3. Ex field profiles at kx = p/d on the three sides of one metallic block, as plotted in Fig. 1(b), i.e., in the x-z, x-y, and y-z planes, for each of the four suface plasmon modes mode in Fig. 2. (a) Mode (1). (b) Mode (2). (c) Mode (3). (d) Mode (4).

 

Regularly Patterned InGaN/GaN Quantum-well Nanorod Light-emitting Diode Arrays

Professor C. C. (Chih-Chung) Yang's group

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

台湾大学光电所 杨志忠教授

With the nano-imprint lithography and the pulsed growth mode of metalorganic chemical vapor deposition, a regularly-patterned, c-axis nitride nanorod (NR) array of quite uniform geometry with simultaneous depositions of top-face, c-plane disc-like and sidewall, m-plane core-shell InGaN/GaN quantum well (QW) structures is formed. The differences of geometry and composition between these two groups of QW are studied with scanning electron microscopy, cathodoluminescence, and transmission electron microscopy (TEM). In particular, the strain state analysis results in TEM observations provide us with the information about the QW width and composition. It is found that the QW widths are narrower and the indium contents are higher in the sidewall m-plane QWs, when compared with the top-face c-plane QWs. Also, in the sidewall m-plane QWs, the QW width (indium content) decreases (increases) with the height on the sidewall. The observed results can be interpreted with the migration behaviors of the constituent atoms along the NR sidewall from the bottom.

Fig. 1 Plan-view (a) and 30o-tilted (b) SEM images of the GaN NR array; Plan-view (c) and 30o-tilted (d) SEM images of the QW NR array. Fig. 2 Plan-view SEM (a) and the co-located panchromatic CL (b) images of the QW NR array; Cross-sectional SEM (c) and the co-located panchromatic CL (d) images of the QW NR array. The rectangles in (a) and (c) indicate the locations of local CL spectrum measurements.

 

Fig. 3 CL spectra of the QW NR array measured at different locations and different view directions, including that from the large-scale plan-view (PV) measurement, that at the center on the top face of an NR (TF-c) and that at the rim on the top face of the NR (TF-r), that from the large-scale cross-sectional view (CS) measurement, that at a point near the top of the sidewall (SW-t), near the middle height of the sidewall of the NR (SW-m), and near the bottom of the sidewall of the NR (SW-b). The plan-view CL spectrum of the bare GaN NR array is also plotted as curve PV-GaN. Fig. 4 (a) Cross-sectional TEM image of a QW NR. The portions of the top, the slant (1-101) facet on the right, the top sidewall on the right, the middle-height sidewall on the left, and the bottom sidewall on the right of the NR are magnified to show parts (b) and (d)-(g), respectively. The HAADF image of the NR top portion is shown in part (c).

 

     
 
 
论文题目:一维奈米半导体/压电材料在非量子局限尺寸下之光电性质与电子结构研究

姓名:陈政营   指导教授:何志浩教授

 

摘要

本论文在非量子局限(quantum confinement regime)尺寸下研究一维奈米半导体/压电材料之光电性质及电子结构(electronic structure)与讨论其超越其本质材料的优异光电特性。

首先,由于一维奈米材料具有次波长的直径、高的长宽比及大的介电常数,所以具有显著的光学异向性。在此我们发现75o–85o斜向氧化锌(ZnO)单晶奈米线数组之新颖材料具有显著的水平双折射(in-plane birefringence)及优异的偏极化放光(polarized emission)特性。其中,此水平双折射的大小(0.11)比起块材氧化锌大一个量级。这研究结果说明此新颖材料不只可以应用于被动光学组件且可以用于具有偏极化光学侦测与发光组件。

第二,由于一维奈米材料具极大的表面积与体积比且半径接近于德拜长度(Debye length),所以光电性质强烈地被表面电子结构所影响。这里我们透过四个主题研究一维奈米材料的电子结构[尤其是表面电子结构]与其光电性质的关系:(1)利用光电子能谱(photoelectron spectroscopy)配合场效晶体管量测观测氧化锌奈米线的表面能带弯曲(surface band bending)之关系;(2)利用x光吸收光谱(X-ray absorption spectroscopy)研究掺铒氧化锌奈米柱数组的电子结构与1.54 μm放光效率;(3)透过表面钝化(surface passivation)加强近带隙发光(near band-edge emission);(4) 氧化锌奈米带的光响应与表面及接口效应的关系。这些研究结果非常有助于一维奈米材料制作传感器(sensor)与光电组件。

最后,因为氧化锌是纤锌矿(wurtzite)极性半导体具有机电耦合效应,所以利用氧化锌奈米线数组的压电特性来作为能量收集的研究也在论文中被讨论。而锆钛酸铅是传统认知的压电材料,故我们也研究锆钛酸铅(PZT)奈米线数组的压电特性来与氧化锌的结果做比较。这研究有助于深入了解与设计奈米发电机(nanogenerator)

图一、(a) 斜向氧化锌奈米数组SEM影像 (b) 氧化锌奈米数组的侧向TEM影像 (c) 高解析氧化锌奈米线TEM影像 图二、奈米线之表面能带弯曲示意图 (a) 无氧气吸附的奈米线 (b) 具有氧气吸附的奈米线 (c) 具有氧气吸附且表面金奈米粒子的奈米线

 

 

论文题目:有机发光二极管载子注入增进技术及其界面电子结构研究

姓名:王博升   指导教授:吴志毅教授


摘要

本研究提出并验证处理氧化钼(MoO3)电洞注入层的方法,可以有效提升有机发光二极管(OLED)中电洞经由铟锡氧化物(ITO)阳极注入电洞传输层(HTL)的效率。利用氩离子电浆轰击已蒸镀于基板上的氧化钼薄膜表面,可以提升氧化钼薄膜的电洞注入效果。在离子轰击氧化钼表面的同时,利用紫外光电子能谱观察,发现在氧化钼的能隙中产生大量的能隙能阶,这些能隙能阶可提供电洞连续的传输途径,使电洞注入效率更好。图一标示氧化钼未经处理(A)与经过离子轰击处理(B、C、D)之OLED组件电流,图二则显示其亮度。经过处理之组件具有较高的组件电流与亮度。

图一 图二
 

 
 
 

— 数据提供:影像显示科技知识平台 (DTKP, Display Technology Knowledge Platform) —

— 整理:林晃岩教授、陈圣灏 —

光学传感器:检查细胞温度

一种新的光学技术可用来精确地描绘单一细胞内的温度分布,并进而提供细胞热力学深入的信息且帮助癌症光热疗法的发展。(Nano Lett. 12, 2107–2111; 2012)

这个计划是由来自西班牙巴塞隆纳光电科学研究所(ICFO) 、加泰隆(Catalan)学术暨高等研究所(ICREA)以及法国马赛菲涅尔(Fresnel)研究所的科学家共同发展,他们使用绿荧光蛋白当作热探测器。温度测量利用监测绿荧光蛋白随温度变化的荧光极化各向异性(polarization anisotropy),当温度升高,细胞的布朗旋转运动增加而降低其发射光的极化各向异性。

来自ICFO的研究员Romain Quidant解释说:「如同大多数化学反应,许多细胞内的功能如基因显现与细胞分裂都属于放热过程。」测量细胞内部温度的可能性是单一细胞等级的生物热学之未探索领域的可能发展基础。

如图一研究员使用HeLa及U-87 MG癌症细胞测试他们的技术,这些细胞已经用绿荧光蛋白转染且被用来加热的金奈米棒包围。这个研究使用一具有两激光源的共焦显微镜,其一为红外线激光源作为加热金奈米棒之用途,而另一蓝色激光源则用以激发绿荧光蛋白。结果显示细胞内之测量具有300奈米的空间分辨率与0.4 °C的温度精确性。此方法为一非侵入性测量,具有高速读出的能力并可以20毫秒的时间分辨率作数据收集的动作。

研究人员正研究增进精确度与分辨率的方法并计划应用在活体试验中。

Quidant 对此技术表示:「描绘单一细胞内的温度分布将会帮助解释不同细胞器官的热力学。」「这些信息对于监测细胞的仪器而言是相当重要的,并可藉此对细胞活动有更进一步的了解,例如:癌细胞所产生的热度增加超过一般的细胞。」

图一、经由光加热方法在HeLa细胞内传送局部热量的温度测量。
(a) 绿色荧光蛋白转染HeLa细胞的荧光强度。(b) 未加热的温度图。(c) 使用50毫瓦聚焦的红外线 激光加热奈米棒的温度图,置于中间图像右边50微米处。(d) 某点在细胞内时间对温度的变化。(e) 细胞内某点经过不同 激光加热的温度。

 

资料来源: Oliver Graydon, Optical sensors: Checking cell temperature, Nature Photonics 6, 346 (2012), doi:10.1038/nphoton.2012.123, Published online 29 May 2012
  http://www.nature.com/nphoton/journal/v6/n6/full/nphoton.2012.123.html
参考数据 Mapping Intracellular Temperature Using Green Fluorescent Protein Nano Lett., 12 (4), pp 2107–2111 (2012), doi: 10.1021/nl300389y, Publication Date (Web): March 6, 2012
http://pubs.acs.org/doi/pdf/10.1021/nl300389y
   
 
 
 
版权所有   国立台湾大学电机信息学院光电工程学研究所   http://gipo.ntu.edu.tw/
欢迎转载   但请注明出处   http://gipo.ntu.edu.tw/monthly.htm/