8月份光電所演講花絮
時間:97年8月11日上午10點30分~11點45分
講者:Prof.
Ray T. Chen (Nanophotonics and Optical Interconnects Lab., Department of
Electrical and Computer Engineering, The University of Texas, Austin)
講題:Silicon-
and Polymer-based Nanophotonic Devices for Optical Communications
Prof. Ray T. Chen於97年8月11日(星期一)蒞臨本所訪問,並於電機二館142會議室發表演說,講題為「Silicon-
and Polymer-based Nanophotonic Devices for Optical Communications」,本所教師及學生皆熱烈參與演講活動,獲益良多。
時間:97年8月25日下午3點
講者:何賽靈教授(Joint
Research Center of Photonics of the Royal Institute of Technology
(Sweden) and Zhejiang University (China))
講題:Improving
the performances and functionalities of photonics devices with
subwavelength-structures and nanoparticles
何賽靈教授於97年8月25日(星期一)蒞臨本所訪問,並於電機二館105演講廳發表演說,講題為「Improving
the performances and functionalities of photonics devices with
subwavelength-structures and nanoparticles」,本所教師及學生熱烈參與演講活動。
|
Ferroelectric nitride-oxide nanowire MOSFET and phase change memory
Professor
Lung-Han Peng's group
Graduate Institute of Photonics and Optoelectronics, National Taiwan University
(e-mail)
peng@cc.ee.ntu.edu.tw
臺灣大學光電所彭隆瀚教授
A.
Nitride-oxide nanowire MOSFET
We demonstrated a selective growth of high crystallinity
GaN
nanowire (NW) with high channel mobility of 1050cm2/V-s
on SiO2/p-Si with optimized VLS growth
parameters. Then, we successfully fabricated top-gate
GaN nanowires FETs by the photolithography process. High
crystalline nanowire approach favors the device scaling
of low dimensional n-MOSFET and logic circuitry. Our
data from a 60nm diameter GaN top-gated nanowires n-MOSFET
exhibit an encouraging gm value of 24mS
measured at the device saturation regime. This number is
one order of magnitude larger than its competitive III-V
compound nanowire transistor. At a moderate 1V gate
bias, the device exhibits a current driving density of
60mA,
VT to -1.5V, ON/OFF current ratio over 103,
and subthreshold swing to 150mV/dec.
B. Nitride-oxide phase change memory
We report a new type of phase-change materials based
upon the compound of In-Ga-O. It is found to exhibit
two-order of magnitude resistivity change between the
high-resistive amorphous phase and the low-resistive
cubic phase at a phase-change temperature ~250°C.
When the In-Ga-O is incorporated into a nonvolatile
phase change memory (PCM) device with a double-heater
(DH) structure, it exhibits an on/off resistance ratio
of 1000 and cycling over 300 times which are superior to
those observed on a single-heater (SH) PCM device. These
results, together with a low bias point of 70mA
at 6.5 volt and 1.5mA at 3.5 volt, respectively, for
set/ reset operation of the DH-PCM device to the
crystalline/amorphous state, suggest that In-Ga-O is a
promising material candidate for low power application
of PCM devices.
Figure
1 (a)
SEM micrograph
of a 60nm GaN NW grown on SiO2/p-Si.
Inset:High–resolution
TEM showing lattice image and spacing of
0.272 nm
of GaN NW.
(b)
electron diffraction patterns revealing
six-fold rotation symmetry of GaN and
high
crystallinity diffraction signals. (c)
DC characteristics of top-gate NW-MOSFET.
(d) Transfer characteristics of a 60nm-dia.
GaN NW-MOSFET. |
|
Figure 2 (a) SET / RESET
programming R-V curve of 30nm-thick IGO PCM
devices with CA~40.1mm2,
with the 80ns SET electric pulse at 6.5V/70mA
and the 20ns RESET pulse at 3.5V/1.5mA. (b)
Cycling-endurance test for the IGO DH and SH
PCM devices. The DH-PCM device shows a
better performance of cycle-endurance (~300
times) than SH-PCM. The IGO film thickness
is 30nm.
GaN nanorod light emitting
diode arrays with a nearly constant
electroluminescent peak wavelength
Prof.
JianJang Huang
Graduate Institute of Photonics and Optoelectronics, National Taiwan University
臺灣大學光電所黃建璋教授
We
present a practical process to fabricate
InGaN/GaN MQW structure using silica
nanoparticle nature lithography. The EL
peak wavelength occurs in the range of
478~480nm and 474~476nm for 100nm and 50nm
nanorod LEDs, respectively, with injection
currents between 25mA and 100mA. As
compared with the significant blue shift in
planar structures (from 478nm to 461nm), the
piezoelectric field is suppressed on nanorod
LEDs since the strain in InGaN layers is
relaxed. We also carried out Raman
measurement to study the strain relaxation
of the nanostructures. The Raman shift of
nanorods is lower than that of planar MQW
structure. It indicates strain relaxed
nanorod light emitting devices are achieved
with a nearly constant peak wavelength.
|
Figure (a) Device profiles of
nanorod LEDs. SOG (in pink) is coated
between rods as a space and sidewall
passivation layer. (b) An SEM image of
100nm-diameter. (c) Comparison of peak
wavelengths of conventional, 50nm and 100nm
nanorod LEDs. (d) Light emission of a 100nm
nanorod LED with an injection current 20mA. |
|
|
— 資料提供:影像顯示光電科技特色人才培育中心•影像顯示科技知識平台 —
— 整理:林晃巖教授、陳冠宇 —
南韓LG顯示器開發出雙板結構的AMOLED面板
南韓LG顯示器針對OLED面板開發出了稱為“DOD”(Dual-plate
OLED Display)的新型面板結構,並於SID
2008口頭報告3.2中發佈。採用這一結構的15吋有機EL面板試製品,也在SID
2008展示會場上展出(如圖一)。
|
圖一:LG開發出的15吋DOD雙板結構OLED面板 |
具有DOD結構的有機EL面板由兩塊玻璃底板構成。在一塊玻璃底板上形成薄膜電晶體(TFT),另一塊玻璃底板上形成有機EL元件;並採用了TFT陣列的陽極與有機EL元件的陰極在面板內部接觸的結構(如圖二)。該結構時的製作流程如圖三所示。南韓LG顯示器認為,由於能夠分別單獨地檢查顯示元件,因此與原來在一塊玻璃底板上形成TFT陣列和有機EL元件的有機EL面板相比,能夠防止成品良率下降。
|
圖二:
DOD(Dual-plate
OLED顯示器)的面板結構 |
15吋有機EL面板的畫素為1024×768畫素。畫素大小為96μm×297μm,解析度為85.5ppi。畫素開口率為52%。採用從有機EL元件的底板一側獲取光的頂部發光結構。
|
圖三:DOD的製造步驟 |
用一個表總結這個技術的優點。低溫多晶矽薄膜電晶體(LTPS
TFT)的下發光形式:因為下發光,所以開口率太小;因為低溫多晶矽薄膜電晶體關係無法做大且亮度不均,只能用到第四代基板。低溫多晶矽薄膜電晶體的上發光形式:無法做大;穿透電極為金屬,會有能量損耗,減損出光效率。非晶矽薄膜電晶體(a-Si
TFT)的上發光形式:可大至第八代基板,但一路做上來的良率不高。非晶矽薄膜電晶體的DOD形式:基板可做大,發光OLED與控制TFT分開來製作,可以提高良率。
表一:各種TFT技術用在AMOLED上的優缺點比較 |
|
中文新聞出處:
http://big5.nikkeibp.co.jp/china/news/news/flat200805230125.html
|
飯後來瓶清涼飲料超爽!然後…得腸癌
?
有此一說
最近看到下列文章有點疑惑,請問是真的嗎?
「不要不相信!
很多人習慣吃飽飯後就來一瓶冷飲,尤其是一些罐裝茶飲料,號稱可以「去油解膩」。喝下去是很爽沒有錯,但你有沒有想過接下來你的肚子裡會發生什麼事?!
快動動大腦想想吧!你肚子裡的牛排(或是鹹酥雞、滷味…)都是油膩膩的食物,腸胃要消化本來就比較吃力了。現在再倒入一瓶冰水…有沒有看過冰箱裡面的豬油牛油啊?!你能想像把上面那層白白的凝固油吞進肚子裡嗎?噁!當你的腸胃裡有一塊塊蠟燭般的凝固油,還去什麼油、解什麼膩咧!如果只是噁心的話就算了,重點是—會得腸癌!!這些凝固油碰到胃酸會再度溶解成半液狀,然後會比固態食物早一步流進腸道裡。於是那稠稠黏黏、油不油水不水的物質就會率先被腸道吸收。但是,腸道並沒有辦法完全吸收排除這些詭異的物質,腸璧絨毛會沾滿油脂,就好像冬天要洗牛肉湯的鍋子一樣,怎麼洗都還是覺得油膩膩。而且久而久之這種噁心的東西就會附著在腸道壁上—你總不能往腸子裡倒沙拉脫吧?!經過經年累月的堆積和質變,這些東西輕則導致息肉,更有可能的是病變成腸癌!
所以趕快改掉這種要命的壞習慣!飯後不要馬上灌冷飲,最好是喝點熱湯或溫開水就好啦!然後平常沒事多喝優酪乳。優酪乳可以讓腸道裡多點好菌、趕走壞菌,幫你的腸子來個大掃除,讓腸道更乾淨∼
」
KingNet
營養保健諮詢營養師回答:
(KingNet 國家網路醫院(線上)諮詢營養師 陳正育營養師)
關於上述文章(傳言)的內容,在下認為其「作者」用心良苦,但太過於「危言聳聽」!
飯後立即飲用冷飲的確有礙身體健康。由於人類是恆溫的動物,中心體溫平均為37.5℃,所以過度地食用冰冷的飲品,就很容易造成生理機能減退。例如:腸胃道消化酵素分泌減少,進而造成腸胃消化吸收功能變差,不想吃飯,體重減輕,抵抗力也跟著變弱。這也就是為什麼飯後喝冷飲較被人詬病的原因。
至於,喝冷飲會將豬油、牛油變成固體或半固體的異形物的說法就真的太誇張了!雖說冷飲會影響體溫,但卻只是暫時性的,畢竟人類是恆溫動物,身體有許多生理構造及方法可以立即調整體內溫差,使得生理機能能儘快恢復正常的功能,包括腸胃道裡的酵素機能—脂解酵素(脂肪分解酵素),它是主要分解脂肪的酵素,經由它的幫忙,腸黏膜組織才能順利吸收乳糜微粒。換言之,脂肪在被腸子吸收前,就已經被脂解酵素「處理」過了!並不像上述傳言說的:「腸道並沒有辦法完全吸收排除這些詭異的物質,腸璧絨毛會沾滿油脂。就好像冬天要洗牛肉湯的鍋子一樣,怎麼洗都還是覺得油膩膩。」;其實,別太小看人體生理的構造,但也別太過於「折磨」你的生理器官。一旦身體在被你反覆地「折磨」及「激烈調節」之下,(例如:喜歡冷熱食物交換食用)一旦身體突然地無法負荷,那麼就有可能讓病菌有機可乘,甚至導致任何疾病上身,故不得不小心謹慎。好的飲食習慣,才是最佳的養生之道。
本文由【KingNet 國家網路醫院】提供
|