發行人:黃升龍所長    編輯委員:蔡睿哲教授    主編:林筱文    發行日期:2008.08.01

最新消息與活動公告    所務公告及活動花絮    特別報導    邁向頂尖大學計畫研究成果專欄

光電所博士班應屆畢業生研究成果專欄    光電要聞    健康小站

所務公告及活動花絮

 

97學年度所學會會長劉光中就任感言∼

非常榮幸能夠擔任光電所學會會長。首先要感謝光電所的各位同學,願意給我一個機會為大家服務。在這裡也要感謝江宏禮同學,以及潘昆懋同學,幫我處理了許多所學會以及實驗室的事務,讓我可以無後顧之憂。

2007年的9月入學迄今,在光電所這個大家庭也度過了一年的光景。我想會讓我擔任所學會會長的原因有很多,最重要原因的在於,在光電所這一年生活當中,我和大家一起上課、做實驗、踢球、聯誼。幾乎大部分的時間都是與同學們度過。我開心時,同學們總是願意 傾聽分享我的喜悅;而在我失落遇到挫折時,身邊的朋友們也帶給我許多建議與鼓勵。這段時間內,我感受到光電所的老師與同學們帶給我的溫情,讓我了解自己是這個大家庭裡的一份子,更希望自己也能為光電所盡一份心力,把自己體會到的喜悅帶給大家。

有鑑於過去的一年中,常聽到同學在討論,相對於電資學院其他研究所而言光電所的活動實在太少,不免有些遺憾。因此在未來的一年中,所學會的重心將放在為同學們舉辦聯歡活動,類型豐富,以期能夠促進各實驗室的感情。活動包括有餐會、運動比賽,以及藝文活動等,敬請期待,並請大家踴躍參與。同時我們期望能夠建立起學生跟所辦公室以及教授之間溝通的管道,讓學生們能夠對光電所的事務發表建議。

雖然跟光電所許多的前輩比起來,我無啻是個新人。但我願以一顆充滿熱誠的心,在任期內全心奉獻於所學會。也請光電所的每一份子不吝批評指教與協助,讓所學會能夠為大家提供最完美的服務。

 

邁向頂尖大學計畫研究成果專欄

 

Optical Characterization of CO2-Laser-ablated Si rich SiOx

Professor Gong-Ru Lin

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所林恭如教授

 Anomalous absorption and the corresponding change in the optical band gap of a CO2-laser-ablated Si-rich (SiOx) film are studied.  The optical band gap energy of as-grown nonstoichiometric SiOx is slightly reduced by increasing Si–Si bonds as compared to quartz.  After rapid thermal annealing using a CO2 laser, the dehydrogenation of SiOx film further increases the Si–Si bonding states and redshifts the optical band gap by 1 eV (see Figure 1a and 1b).  Laser ablation is initiated at a laser intensity of >7.5 kW/cm2 (see Figure 2), leaving numerous luminescent centers that are related to neutral oxygen vacancy defects, increasing the absorption coefficient and related optical band gap energy, and reducing the refractive index in partially annealed SiOx (see Figure 3a and 3b).

 

 In summary, the anomalous absorption spectra and corresponding changes in optical band gap energy, band edge absorption, and structurally damaged related luminescent centers of the CO2-laser-ablated PECVD-grown SiO1.25 film were characterized using UV-VIS-NIR transmission/ reflection and PL spectroscopies.  After PECVD deposition, a slight redshift in the transmission and the lower optical band gap energy of as-grown SiO1.25 in comparison with those of quartz substrate are due to the increase in the Si–Si bonding state in SiO1.25 near the valence and conduction band edges.  Since the as-grown SiO1.25 film contains a high concentration of hydrogen, dehydrogenation not only reduces the thickness of the PECVD-grown SiO1.25 film but also enhances the number of Si–Si bonding states under CO2 laser RTA below the ablation threshold (6 kW/cm2), hence contributing to a redshift of the optical band gap from 3.32 to 2.43 eV.  As the CO2 laser RTA intensity increases to >6 kW/cm2, the optical band gap energy of the PECVD-grown SiO1.25 increases oppositely from 2.43 to 2.76 eV due to the ablation-induced damage to the surface and the generated NOV defects.  The absorption coefficient of the SiO1.25 film at a wavelength of 455 nm is increased by a factor of 3 as the CO2 laser intensity is increased from 7.5 to 12 kW/cm2.  During ablation, the incompletely annealed SiO1.25 with numerous oxygendependent defects also suffers from a slight decrease in the refractive indices from 1.87 to 1.79 when Plaser increases from 7.5 to 12 kW/cm2.

 

FIG. 1a. Transmission change of as-grown SiO1.25 and CO2 laser annealed SiO1.25 at Plaser=6 kW/cm2. (Inset: Transmission spectra of pure quartz)

FIG. 1b. Absorption spectra of as-grown SiO1.25 and CO2 laser annealed SiO1.25 at Plaser=6 kW/cm2. (Inset: The calculated absorption spectra of Si29H24 and Si29H36)

 

FIG. 2. Optical band gap of CO2 laser annealed SiO1.25 as a function of laser intensity. (Inset: Tauc plot, (ahn) 1/2 as a function of photon energy (hn) for as-grown SiO1.25 sample and CO2 laser RTA SiO1.25 samples at Plaser from 6 to 12 kW/cm2)

 

FIG. 3a. PL spectrum of PECVD-grown SiO1.25 annealed at CO2 Plaser of 7.5 kW/cm2 and transmission change of as-grown SiO1.25 and CO2 laser annealed SiO1.25 at Plaser of 6 and 7.5 kW/cm2.

FIG. 3b. Refractive index and absorption coefficient of CO2 laser RTA SiO1.25 as a function of laser intensity.

 

 

 

Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices

Research groups of Prof. Hoang-Yan Lin and Prof. Jiun-Haw Lee

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

(e-mail) hylin@cc.ee.ntu.edu.tw

臺灣大學光電所林晃巖教授

 We experimentally and theoretically investigated the optical characteristics of organic light-emitting devices (OLEDs), having different pixel sizes and attached with patterned microlens array films. For a regular microlens array (Fig. 1(b)), though it can extract the waveguiding light and increase luminous current efficiency for a large-pixelated OLED, we observed that it decreased the luminance to an even lower level than that of the planar OLED as its pixel size was close to the microlens dimension (Fig. 2). Although a microlens can effectively outcouple the light rays originally at incident angles larger than the critical angle, it also can impede the outcoupling for the light rays originally at incident angles smaller than the critical angle. Enhancement or reduction of the light extraction depends on the relative positions of the light emitting point and the microlens. Therefore, we proposed a center-hollowed microlens array (Fig. 1(c)), of which the microlenses directly upon the pixel are removed, and proved that it can increase the luminous current efficiency and luminous power efficiency of a small-pixelated OLED. As can be seen from Fig. 3, by attaching this patterned microlens array, 87% of luminance enhancement in the normal direction was observed for a 0.1´0.1 mm2 OLED pixel. On the other hand, a regular microlens array resulted in 4% decrease under the same condition.

 

Fig. 1. The OLEDs attached (a) without, and with (b) a regular and (c) a center-hollowed microlens array.

 

Fig. 2. The relationships between the relative luminance at normal direction and the pixel size of the OLEDs attached with regular microlens arrays: (a) experimental and (b) simulated results.

 

Fig. 3. The angular-dependent luminance of the OLED attached with a regular microlens array or with a center-hollowed array.

*This paper was published in OPTICS EXPRESS, Vol. 16, No. 15, pp. 11044-11051, 21 July 2008.

 

 

 

Electrical and Optical Characteristics of OLED with Bipolar Emitting Layer

Research group of Prof. Jiun-Haw Lee

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所李君浩教授

 One of the root causes which limits the operation lifetime of organic light-emitting device (OLED) is the charged carriers piled-up at the interface of transporting layer and emitting layer (EML). By introducing the bipolar EML, the recombination zone in an OLED becomes wider which effectively elongated the operation lifetime. We have demonstrated the performance improvement and studied the electrical and optical characteristics of OLEDs with bipolar EML quantitatively and qualitatively.

 

 We used high-electron-mobility ETL material, bis(10-hydroxybenzo[h] qinolinato)beryllium (Bebq2), mixed with a-naphthylphenylbiphenyldiamine (NPB) as the bipolar EML. We have demonstrated an OLED with a luminance of 27600 cd/m2 at only 5 V, and a lifetime four times longer than that of a conventional device. Since the recombination zone was wider, the maximum luminance in a bipolar OLED can be as high as 288000 cd/m2 with the current density over 7 A/cm2, which may be suitable for flashlight applications. Not only the performance improvement, we also discussed the carrier transport characteristics in a bipolar EML from current-voltage characteristics and the recombination process from the electro-luminescence measurement. We found an optimized mixing ratio which was NPB:Bebq2=1:1 with highest current density due to the electron-hole balance in this bipolar EML. The spectral shift was due to the recombination shift and the solid-state solvation effect.

 

 Besides, we used two different methods to quantitatively investigate the recombination zone in the MH-EML consisting of NPB and tris-(8-hydroxyquinoline) aluminum (Alq3). The first method was by using rigorous electrical and optical models to simulate the carrier distribution, recombination distribution, and EL spectra in the MH-OLED. By fitting the J-V curves and the spectra with different mixing ratios, the mobility values can be extracted. Electron (hole) mobility decreased (increased) monotonically with increasing the NPB ratio. However, the driving voltage increased then decreased due to the competition between the hole-current enhancement and the electron-current decline. For the second method, we used a thin 4-(dicyanomethylene)-2-tert-butyl-6-1,1,7,7-(tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) layer with the thickness of 1.2 nm and the volume concentration of 2% as a probe to determine the recombination zone. Besides, we also found that when the probe position overlapped the maximum recombination position, a voltage reduction of 1.97 V was observed. It can be well explained by the enhancement of the recombination current from the continuity equation. This result suggested that the driving voltage of an OLED with the bipolar EML can be reduced by inserting a dopant in a suitable region. A white OLED was fabricated with selectively doping a yellow dopant in the blue EML which exhibits high efficiency and low driving voltage.

 

 

 

光電所博士班應屆畢業生研究成果專欄

 

論文題目:使用新穎材料與元件結構之高效率磷光有機發光元件

姓名:蔡明翰

指導教授:吳忠幟

摘要

在藍光磷光元件的開發上,高三重態能階主體材料是一項重要關鍵。故我們首先研究具有高三重態能階之電洞傳導材料與電子傳導材料,以及高效率之藍光磷光元件結構。次一主題是探討新型多功能主體材料;其後並具體實現單層之高效率紅光磷光元件。接著藉由高三重態能階雙極性傳導材料之開發,成功地將高效率單層磷光元件推展到綠光與藍光。此外,我們對於使用磷光主體材料以利用偶極矩作用能量轉移機制之元件亦有探討。本論文最後則研究混合螢光與磷光之白光有機發光元件,以期能實現固態照明之應用。

 

 

光電要聞

 

— 資料提供:影像顯示光電科技特色人才培育中心•影像顯示科技知識平台 —

— 整理:林晃巖教授、陳冠宇 —

 

MEMS開關驅動的OLED面板  

 南韓科學與技術學院(KAIST)在SID 2008國際研討會中,進行編號3-4論文之口頭報告,主旨是使用MEMS開關代替驅動有機ELTFT。此舉之用意是在打破以往使用的矽TFT在大螢幕製作時與可靠性方面存在的限制。目前對有機EL的驅動通常是使用矽薄膜電晶體(TFT)。然而目前作為主流的低溫多晶矽TFT,對於再結晶製程中所使用的雷射退火裝置,在大畫面元件製程方面仍然存在問題。此外,非晶矽和微晶矽的TFT,則存在著其閾值電壓會隨時間而變化的問題。

 

 為了解決上述這些問題,KAIST在此次研討會中提出了使用MEMS開關技術來驅動有機ELMEMS在顯示的應用方面,目前多以其作為光的切換開關,例如:德州儀器的DLPQualcommiMoDSilicon Light MachineGLV;而KAIST所提出的MEMS開關,則是採用脈衝寬度調變(PWMpulse width modulation)的數位電路來驅動有機EL工作。

 

 如圖一與圖二所示,KAIST試製了50 μm×10 μmMEMS開關,電流可達15 mA;在hot switching模式底下(57 μA100 Hz)可達1.3×105個操作週期,相當於22分鐘左右。如圖三與圖四所示,將該開關與有機EL元件連接並進行驅動,證實了數位灰階顯示的可能性,此次發表所獲得的結果是:在電壓VDD10 V、脈衝頻率為60 Hz的條件下,最大輝度為1781 cd/m2duty cycle50%時的輝度為914 cd/m2duty cycle5%的輝度為98.27 cd/m2

 

   

圖一KAIST試製的MEMS開關
 
圖二KAIST試製的MEMS開關的製造方法
 
圖三MEMS開關驅動有機EL
 
圖四證實基於脈衝寬度調變的數位灰階顯示的可行性

 

 

中文新聞:

http://big5.nikkeibp.co.jp/china/news/news/semi200805260112.html

 

 

 

健康小站

 

不睡枕頭,小心落枕?

有此一說

不睡枕頭容易落枕也容易造成頸部或脊椎的傷害?

KingNet 家庭醫學科醫師回答
台北縣三重市衛生所主任 張必正醫師

所謂的落枕,其實是頸部的筋膜炎,也就是因為頸部的肌肉不當使用或使用過度引起肌肉發炎以致於轉動時造成疼痛。往往是因為枕頭的柔軟度、高度等因素,造成頸部姿勢不自然,經過一個晚上的不當施力,而造成筋膜炎。

不睡枕頭並不會直接造成頸椎的傷害,只是可能導致頸部肌肉的過度伸張,容易造成酸痛,但每個人可以因為自己的舒適度做認定。枕頭的硬度、高度讓您覺得舒適,容易入睡,隔天也無不適,就是最好的枕頭。

落枕一旦發生,切忌再過度扭動頸部肌肉,以免造成更嚴重傷害

 

本文由【KingNet 國家網路醫院】提供

 

版權所有   國立臺灣大學電機資訊學院光電工程學研究所   http://gipo.ntu.edu.tw/

歡迎轉載   但請註明出處   http://gipo.ntu.edu.tw/monthly.htm