發行人:楊志忠所長 編輯委員:蔡睿哲教授 主編:林筱文 發行日期:2006.03.01 |
||||||||||||||||||||
本所「顯示光電科技產業研發碩士專班」95年度秋季班招生異動∼ 本所「顯示光電科技產業研發碩士專班」原本預定於3月中旬舉辦之招生入學考試因故延期,擬於95年4月下旬起發售招生簡章,5月中旬接受報名,預定於5月底舉辦入學考試,詳細招生資訊將於3月底正式公告,請密切注意光電所網站:http://eoe.ntu.edu.tw/。 歡迎本所新學期來訪之客座教授:Dr. Ian T. Ferguson∼
本校與奇美電子公司光電產學研究合作正式展開∼ 本校與台南奇美電子公司光電產學研究合作,第一年計畫已自今年一月起展開,全部計畫經費共新台幣800萬元,由本所楊志忠所長擔任總計畫主持人,參與各項子計畫教師包括本所林晃巖、吳志毅、李君浩、黃建璋教授及機械系廖運炫教授,材料系蔡豐羽教授,電機系吳宗霖教授,高分子所林唯芳教授,共八位教師。該項計畫將針對顯示科技相關課題展開產學合作研究。
|
||||||||||||||||||||
|
||||||||||||||||||||
∼楊志忠教授實驗室簡介∼
楊志忠教授研究課題: 1. 氮化物奈米結構磊晶生長 2. 寬能隙半導體奈米結構之超快與奈米光學研究及材料分析 3. 白光發光二極體研製 4. 表面電漿波晶體與光子晶體研製 5. 生醫光電—光學同調斷層掃瞄
一、以「有機金屬氣相沉積系統(MOCVD)」從事氮化物奈米結構磊晶生長 採用自威科(VEECO)儀器公司所生產之P75有機金屬氣相沉積系統(MOCVD)為本實驗室一核心實驗設備,用以成長高品質氮化物(Nitride)材料。此系統中,主要可分為垂直式生長腔(Vertical Reactor)、氣體傳送系統(Gas Delivery System)、排氣系統(Exhaust System)和可程式化邏輯控制電路(PLC),藉由控制腔體內的溫度(Temperature)、流量(Flow rate)、壓力(Pressure)和晶圓承載盤轉速(Disc rotation speed)來達到最佳化的材料生長條件。相較於一般水平式生長腔(Horizontal reactor)系統,本系統配備的高速承載盤,在高轉速(1500rpm-2000rpm)下配合適當的壓力和溫度,氣漩可在磊晶板(Wafer)上方形成穩定和薄的邊界層(Boundary layer),藉此生長出高品質的氮化物材料和絕佳介面特性的發光元件。 目前本實驗室主要的研究領域為全半導體白光二極體元件生長、氮化銦鎵量子點(InGaN quantum dots)及氮化銦(InN),目前商用的白光元件普遍利用短波長藍、紫光二極體激發螢光粉技術來達到白光,然而此技術不但有能量損失的問題,螢光粉專利更掌握在國外大廠手中,發展全半導體白光源除可免除專利問題外,如能在長晶技術上有所突破,元件效率可超越商用白光光源。成長氮化銦鎵量子點為另一重要課題,相較於傳統塊材(bulk)和量子井(Quantum well)結構,量子點結構具有較高的內部量子效率(Internal quantum efficiency)及窄頻譜特性,對於提高元件效率、降低雷射起始電流具有正面助益,未來更可進一步製作成單光子光源(Single photon source)。此外,由近幾年的研究顯示,氮化銦具有高mobility特性,非常適用於高速元件,有機會成為最高效率相對上廉價的太陽能材料,在此能源議題受重視之際,成長高品質氮化銦材料也成為本實驗室的重要研究主題。
二、以高解析度穿透式電子顯微術分析半導體奈米結構 我們自行製作試片,然後使用本校材料系提供的100KEV CXII電子顯微鏡觀察試片薄區,並利用離子薄化機將薄區薄化出完整的試片薄區,當試片薄化完成之後,我們會將試片送進於國科會台大貴重儀器中心的場發射槍300kev穿透式電子顯微鏡,在此300kevTEM儀器裡,我們可以觀察試片薄區的高解析像,並做Two-Beam Image的拍攝,或是做Spot Size約 6nm~8nm左右的EDS分析,高解析像可以拍攝到標準尺2nm的影像,可以清楚的呈現試片材料原子的繞射成像排列,進而觀察薄區的奈米結構,而拍攝Two-Beam image照片可以利用SSA影像分析軟體處理原子聚集對發光特性的影響,本實驗室對於研究量子井的奈米結構與多層量子井層與層之間的長晶成長過程影響有多年的研究成果。目前本實驗室研究之對象包括氮化物及氧化鋅等奈米結構材料。
三、光激螢光(Photolumnescence, PL)量測 主要設備有325nm cw He-Cd雷射,二倍頻Ti:sapphire超短脈衝雷射,四倍頻Nd:YAG雷射,0.5m單光儀,鎖相放大器,低溫真空系統,電子冷卻式CCD偵測器,近紫外光長工作距離物鏡,影像監測系統等 。主要研究為分析氮化銦鎵材料量子井和發光二極體在不同長晶條件或元件結構差異下的溫變光學特性,以提供長晶團隊所需的相關技術資訊;另外也用於量子井和表面電漿波耦合用以提高量子井內部量子效率相關研究的實驗分析。可量測頻譜範圍涵蓋近紫外光到紅外光波段(~300nm to ~2mm)。 在nano-PL的研究方面,我們在共焦顯微架構的光學架構下利用固態浸沒透鏡和金屬光罩微孔徑的技術,進一步將micro-PL系統中的激發光點限縮至奈米等級,以提高量測系統的空間解析能力。搭配低溫系統,nano-PL主要用於分析氮化銦鎵量子點的光學特性和量子井中銦成分之空間變動。
四、時域發光研究 我們實驗室應用時間解析光譜(Time-resolved spectroscopy)技術研究發光材料的光學特性,研究方向在於探討發光材料載子動力學包括:電子電洞結合放光所需的時間、電子電洞在結合放光前電子與電子及電子與聲子的交互作用,最主要的實驗可分為兩個部分: (一) Time-resolved Photonluminescence(TRPL) 應用飛秒雷射(Ti:sappire Laser)、streak camera(時間解析為50 ps)及低溫系統,進行時間解析光致螢光在室溫與變溫的實驗。利用這套系統我們成功的研究出在InGaN/GaN的多重量子井中,電子與電洞結合放光所需的時間與材料的特性(quantum confined Stark effect、In-rich cluster、piezoelectric filed)有很大的關係;此外,在不同濃度及矽摻雜條件下其發光特性也會有所變化。對於氧化鋅(ZnO)薄膜的研究,我們建立了一個四能階的模型來解釋在自由激子、施體激子、雙激子以及施體束縛雙激子間的載子流動。 (二) fs Pump-probe spectroscopy 將飛秒雷射分成兩道同步光源,一為激發光源另一道為探測光源,在兩道光源間的時間延遲下探討載子在發光材料上被激發後的鬆弛機制(relaxation),其時間解析為兩道光源的Cross correlation約為 150 fs。結合TRPL的實驗結果,我們成功的建立InGaN/GaN多重量子井的載子動力學機制的研究。此外,我們也建立了一套非簡併pump-probe實驗系統,成功的研究出在InGaN薄膜中載子在激發後被In-rich cluster捕獲所需的時間約為600~700 fs。
五、白光發光二極體及奈米結構之研製 本實驗室從事氮化合物材料物元件研究,利用黃光製程、乾式蝕刻技術(ICP-RIE dry etching technique)和高真空蒸鍍技術製作氮化合物材料系列之發光二極體,包括藍光、綠光、黃光及紅光發光二極體,涵蓋可見光發光波段,見下圖。在商業上白光發光二極體係在藍光發光二極體上塗抹石榴粉,使得石榴粉吸收藍光,放出黃光,同時,藍光和黃光混合產生白光,但由於只有兩色混合,故有演色性(Color-rending)低的缺點。我們實驗室成功製作全半導體白光發光二極體,係利用有機金屬氣相沉積(MOCVD)成長藍光、綠光量子井結構發光二極體,利用半導體製程技術製作藍綠光發光二極體後,在其上塗抹硒化鎘材料的奈米晶粒,使硒化鎘奈米晶體吸收藍光後放出紅光。另外,我們成功地在藍光發光材料上製作微米週期孔洞,增加放光表面積,加強藍光吸收轉換成紅光量子效應。另外,我們也探討氮化物在奈米尺寸結構下之物理特性,係利用電子束微影技術和乾式蝕刻技術在藍光氮化銦鎵材料上製作出直徑為10nm、高度為180nm的奈米柱,利用nano-PL研究其光學特性。目前,本實驗室正從事於氮化鎵系列光子晶體(Photonic crystal)及表面電漿晶體(Surface plasmonic crystal)研究。
六、表面電漿波晶體與光子晶體模擬研究 我們也從事光電元件之設計分析與數值模擬的技術發展,目前已建立的電磁模擬技術包括Finite difference time domain method(FDTD)、Plane wave expansion method(PWM)、Moment method(MoM)、Finite difference Frequency domain method(FDFT)與Coupled-wave method(CWM)等適用性高的模擬方法,並且不斷改良數值技術與發展運用層面。實驗室在光子晶體波導、微共振腔等光電元件模擬設計上已有相當成果,目前正研究Surface Plasmon Resonance現象在光電元件上的運用發展,針對提高InGaN MQW半導體發光效率、metallic photonic band-gap waveguide等新式光電元件進行研究。
七、生醫光電—光學同調斷層掃瞄 本實驗室的研究著重在光學同調斷層掃描系統的發展,此技術有別於其他掃瞄技術,例如:超音波、核磁共振(MRI)、顯微術檢測方式,它同時具有高解析度、高速、以及較深穿透深度等優點,並利用非侵入式的光學掃描重建組織二維或三維結構。實驗室的發展重點包含能達到高速掃描的頻域光學同調斷層掃描(Spectral-domain Optical coherence Tomography, SDOCT)、偏振敏感式光學同調斷層掃描(Polarization-sensitive Optical Coherence Tomography, PSOCT)、二倍頻光學同調斷層掃描(Second Harmonic Optical Coherence Tomography, SHOCT)、高解析度光學同調斷層掃描(High-resolution Optical Coherence Tomography)以及利用多次掃描來達到高解析度的光學同調斷層掃描技術,其中若是生物組織具有雙折射的特性便可藉由PSOCT來觀察得知,這是一般掃瞄系統無法得到的資訊,而SHOCT對於組織結構的對稱性具有相當高的敏感性,這兩種系統屬於觀測生物參數的OCT,然而發展這些技術的最終目標就是為了能夠直接應用在臨床上。另外除了光電技術的發展外,我們已將某些技術實際應用於生物組織量測及臨床應用,其中包括眼球、皮膚、脂肪肝以及心血管病變的研究,並配合特殊設計的掃描探頭應用於臨床口腔癌的早期診斷。 實驗設備包含了多套雷射光源:一套Cr: Forsterite laser、三套鈦藍寶石雷射(Ti: sapphire laser)及兩套SLD光源:中心波長分別為950nm及1300nm,另有光譜儀、光纖接機、一維及二維CCD、PZT 致動器、檢光器、光電調變器、光學掃描器、電子濾波器、步進馬達、信號產生器、高速數據擷取卡、影像擷取卡、以及示波器等等。
|
||||||||||||||||||||
本所一、二月份教師出國動態
|
||||||||||||||||||||
|
||||||||||||||||||||
覺得累是因為缺乏維生素C的關係嗎?
有此一說: 例如:芭樂、蕃茄、橘子、柳橙、奇異果...等等, 此外,維生素C是水溶性維生素,故較容易流失, 再者,體內易消耗維生素C,尤其是處於緊張狀態下,越容易消耗維生素C, 抽菸(菸害)亦會破壞維生素C, 其實,減緩疲勞的維生素不只有維生素C而已,還有維生素B群,及礦物質鈣和鎂。
本文由【KingNet 國家網路醫院】提供
|
版權所有 國立 台灣大學電機資訊學院光電工程學研究所 http://eoe.ntu.edu.tw/
歡迎轉載 但請註明出處 http://eoe.ntu.edu.tw/monthly.htm