第156期 2019年10月刊
發行人:黃建璋所長  編輯委員:曾雪峰教授  主編:林筱文  發行日期:2019.10.30

本所陳奕君教授指導許書銘博士生榮獲「European Materials Research Society 2019 Fall Meeting (歐洲材料研究學會2019秋季會議) Graduate Student Award」,特此恭賀!


指導教授 論文題目
許書銘 陳奕君教授

Complementary Inverters Composed of Oxide Thin-Film Transistors



指導教授 論文題目
吳偉立 林恭如教授






~ The 4th International Conference on BioPhotonics; ICB 2019

(September 15~18, 2019, at Barry Lam Hall, NTU)

The 4th International Conference on BioPhotonics (ICB; http://icb2019.ntu.edu.tw/) was held at the Barry Lam Hall of the National Taiwan University during Sept. 15–18, 2019. More than 150 scholars and graduate students were registered from more than 10 countries. The goal of the ICB is to have technical exchanges and networking among the leading academics worldwide. Emergent areas that have the potential to significantly benefit our future life, such as precision medicine, cell/immune-therapy, liquid biopsy, optical biopsy, artificial intelligence on biomedicine, were addressed in the 42 papers during the ICB 2019.

Many renowned speakers shared their latest achievements and insights on the future of research in biophotonics ranging from life science to clinical applications. Professor Xingde Li, Johns Hopkins University, U.S.A. addressed OCT and endomicroscopy towards visualization of histology; Prof. Marcus Sauer, University of Wuerzburg, Germany addressed single-molecule sensitive super-resolution microscopy, and Prof. Ann-Shyn Chiang, National Tsing Hua University addressed mapping the Drosophila engram.

This year, we had a teleconference session, which was delivered by Prof. Roel Baets of the Ghent University, Belgium. He delivered the talk while he was in Washington DC, US. It was a good experience to witness the power of photonics technology by reducing the physical transportation in response to global warming.

The ICB 2019 was jointly sponsored by the National Taiwan University, the Taipei and Italy Chapters of IEEE Photonics Society, IEEE Engineering in Medicine and Biology Society, and Taiwan Photonics Society. The Organizers also appreciate the funding support by the Ministry of Science and Technology, Taiwan as well as the industrial sponsorships from Apollo Medical Optics and Crystalvue Medical Corporation.

Fig. 1 Group photo of the ICB 2019 participants.

Fig. 2 Welcome address by Prof. JianJang Huang, Chairman, Graduate Institute of Photonics and Optoelectronics, National Taiwan University.

Fig. 3 Plenary speech by Prof. Xingde Li, Johns Hopkins University, USA.

Fig. 4 Teleconference by Prof. Roel Baets, Ghent University, Belgium.

Fig. 5 The IAC Chair (Prof. Silvano Donati, left) and TPC Chair (Prof. Fu-Jen Kao, right).

Fig. 6 Lunch time at the Barry Lam Hall.

Fig. 7 The poster session of ICB 2019.





Development of Anti-UV Structures for OLED Displays

Professor Chung-Chih Wu

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所 吳忠幟教授

Although OLED displays are penetrating into wider applications in consumer electronics due to their high efficiency, high contrast, and good color gamut etc., their extension to outdoor applications (e.g., wearable, vehicular, signage applications etc.) is still facing significant reliability challenges. One major issue is their weak resistance against the UV-light induced degradation; the ultraviolet light (UV-light, λ<400nm) and high energy visible light (HEV-light, 400 < λ < 450 nm) in sunlight would significantly degrade OLEDs and much shorten display lifetimes. Thus, an effective anti-UV technique, that can protect OLEDs from UV/HEV damage and meanwhile maintain display performance, is strongly required. Here we report the development of effective anti-UV/HEV, high-transmittance, high-image-quality structures for OLED display panels based on carefully designed optical thin-film structures composed of more robust inorganic UV-absorbing and dielectric materials, instead of polymer/organic materials that may suffer yellowing by UV radiation.

Fig. 1.(a) Typical OLED panel structure. (b) Transmittance spectra of different anti-UV thin film structures. (c) Voltage shifts (ΔV) of test samples under a same current density after repeated solar soaking test cycles.



姓名:陳品翔   指導教授:劉致為教授



當電晶體尺寸持續微縮後,使用具有高遷移率的通道材料來增加驅動電流或降低能耗是未來半導體元件發展的方向之一。在論文的第一部分將會針對鍺之同素異形體,藍絲黛爾鍺(lonsdaleite Ge)進行特性分析,包含其能帶結構、等效質量、彈道電流以及應變響應等皆會詳細分析。具有穩定結構之藍絲黛爾鍺預期能有效提升元件表現而不改變其材料構成,而其直接能隙之特性亦利於用於光電元件之應用。







版權所有   國立臺灣大學電機資訊學院光電工程學研究所   http://gipo.ntu.edu.tw/
歡迎轉載   但請註明出處   http://gipo.ntu.edu.tw/monthly.htm/