第145期 2018年10月刊
 
 
 
發行人:林恭如所長  編輯委員:李翔傑教授  主編:林筱文  發行日期:2018.10.30
 
 

本所黃升龍教授榮膺「2019 OSA Fellow」,特此恭賀!

本所吳忠幟教授榮「美光講座教授(Micron Chair Professor)」,特此恭賀!

本所吳肇欣教授榮獲107年中國電機工程學會「優秀青年電機工程師獎」,特此恭賀!

本所王倫、彭隆瀚、蘇國棟、吳育任、李翔傑等教授,代表本所參加電資學院隊,榮獲「107學年臺灣大學四院教職員工慢速壘球聯誼賽」季軍,特此恭賀!

本所11月份演講公告:

日期

講者簡介 講題 地點 時間

光電所專題演講

 11/2 (Fri)

陳又誠教授
Nanyang Technological University, Singapore

Bio-Lasers: An Emerging Field Bridging Laser Photonics and Biomedicine

電機二館
105演講廳

 14:20~16:00
 11/2 (Fri)

鄭克勇教授
Electrical Engineering Dept., National Tsing Hua University

Evolution of AlGaN/GaN Heterojunction Bipolar Transistors

電機二館
105演講廳

 16:00~18:00
 11/30 (Fri)

施上粟教授
國立臺灣大學土木工程學系

生態保育與河川治理競合

博理
101演講廳
 14:20~16:00

 

 

 

 
 
9月份「光電所專題演講」花絮(花絮整理:姚力琪)
時間: 107年9月21日(星期五)下午2時20分
講者: 陳摘文教授(國立陽明大學神經科學研究所)
講題: In vivo imaging of calcium and electrical signals in single hippocampal neurons
  本所於9月21日(星期五)邀請陳摘文教授於博理館101演講廳發表演說,講題為「In vivo imaging of calcium and electrical signals in single hippocampal neurons」。本所教師及學生皆熱烈參與演講活動,演說內容豐富精彩,與現場同學互動佳,師生皆獲益良多。

 

陳摘文教授(右)與本所李翔傑教授(左)合影

 

10月份「光電所專題演講」花絮(花絮整理:姚力琪)
時間: 107年10月5日(星期五)下午2時20分
講者: 游佳欣教授(國立臺灣大學化學工程學系)
講題: Poly(3,4-ethylenedioxythiophene)-based Bioelectrodes with Designed Chemical and Topographical Cues to Manipulate the Behavior of Neural Cells
  游佳欣教授於10月5日(星期五)蒞臨本所訪問,並於博理館105演講廳發表演說。游教授應本所李翔傑教授邀請至本所專題演講課發表演講,本次演講題目為「Poly(3,4-ethylenedioxythiophene)-based Bioelectrodes with Designed Chemical and Topographical Cues to Manipulate the Behavior of Neural Cells」。本次演說內容豐富精彩,與現場同學互動佳,師生皆獲益良多。

 

演講實況

 

時間: 107年10月12日(星期五)下午2時20分
講者: 楊尚樺教授(國立清華大學電子工程研究所)
講題: Advanced Plasmonic Photoconductive Optoelectronics
  本所於10月12日(星期五)邀請楊尚樺教授於博理館101演講廳發表演說,講題為「Advanced Plasmonic Photoconductive Optoelectronics」。本所教師及學生皆熱烈參與演講活動,演說內容豐富精彩,與現場同學互動佳,師生皆獲益良多。
 

 

楊尚樺教授(左)與本所李翔傑教授(右)合影

 

時間: 107年10月19日(星期五)下午2時20分
講者: 李明昌教授(國立清華大學電機系暨光電所)
講題: Manipulation and Interrogation of Colloidal Microsphere Cavities for Optofluidic Applications
  李明昌教授於10月19日(星期五)應李翔傑教授邀請蒞臨本所訪問,並於博理館105演講廳發表演說。演講題目為「Manipulation and Interrogation of Colloidal Microsphere Cavities for Optofluidic Applications」。本次演說內容豐富精彩,與現場同學互動佳,師生皆獲益良多。
 

 

李明昌教授(左)與本所李翔傑教授(右)合影

 

 
 
 

Wire Electrical Discharge Machined Folded-Up Corner Cube Retroreflector

Professor Jui-che Tsai

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所 蔡睿哲教授

We have developed an approach to construct a corner cube retroreflector (CCR). A two-dimensional cutout pattern is first fabricated with wire electrical discharge machining process. It is then folded up into a three-dimensional CCR suspended on a cantilever beam. The folded-up CCR may be driven through external actuators for optical modulation; it can also mechanically respond to perturbation, acceleration, etc., to function as a sensor. Mechanical (static and dynamic modeling) and optical (ray tracing) analyses are also performed.

 

 

© 2018 SPIE

Yu-Fan Chen, Yen-Hung Wang, Jui-che Tsai, “Study of wire electrical discharge  machined folded-up corner cube retroreflector with a tunable cantilever beam,” Opt. Eng. 57(3), 035104 (2018)

 

Three Dimensional Simulation on the Transport and Quantum Efficiency of UVC-LEDs with Random Alloy Fluctuations

Professor Yuh-Renn Wu's laboratory

Graduate Institute of Photonics and Optoelectronics, National Taiwan University

臺灣大學光電所 吳育任教授

The active regions of ultraviolet light emitting diodes (UVLEDs) for UVB and UVC wavelengths are composed of AlGaN alloy quantum barriers (QBs) and quantum wells (QWs). The use of alloy QBs and QWs facilitates the formation of percolative paths for carrier injection but also decreases carrier confinement within the QWs. We applied the recently developed Localization Landscape (LL) theory for a full 3D simulation of the LEDs. LL theory describes the effective quantum potential of the quantum states for electrons and holes in a random disordered system with a high computational speed. The results show that the potential fluctuations in the n-AlGaN buffer layer, QWs and QBs provide percolative paths for carrier injection into the top (p-side) QW. Several properties due to compositional disorder are observed: (1) The peak internal quantum efficiency (IQE) is larger when disorder is present, due to carrier localization, than for a simulation without fluctuations. (2) The droop is larger mainly due to poor hole injection and weaker blocking ability of the electron blocking layer (EBL) caused by the fluctuating potentials. (3) Carriers are less confined in the QW and extend into the QBs due to the alloy potential fluctuations. The wave function extension into the QBs enhances TM emission as shown from a k.p simulation of wave-functions admixture, which should then lead to poor light extraction. The work is published in Applied Physics Letter.

FIG.1. (a) Illustration of UVC-LED layer structures. Contacts are put on the top and bottom surfaces. The simulated device area is 30nm x 30nm. The thickness of QW and QB is 2 and 10nm, respectively. (b) Computed Al compositions in the AlGaN layers obtained by assuming a random alloy. (c) Emission peak calculated by averaging 10 different random maps for a single QW. (d)The band profile of UVC-LEDs without considering composition fluctuation.

FIG. 2. Side view of (a) conduction band potential; (b) radiative recombination rate; (c) non-radiative recombination rate; (d) electron current density; (e) hole current density; and (f) εxx. All maps at J=(4.7V,20A/cm2). The z direction is the growth direction of the epitaxial stack crystal c-axis.

 

 

     
 
 
論文題目:極紫外光範圍內矽鉬薄膜疊的干涉光譜解析

姓名:黎延垠   指導教授:黃升龍教授

 

摘要

當製程節點下探7奈米,傳統浸潤式微影術進行多重圖形而造成高昂的成本,將使得極紫外光微影術(EUVL, EUV lithogrpahy)逐漸成為主流。但由於相關光罩檢測工具現在還不被使用,芯片製造商必須依靠晶圓檢測來識別光罩缺陷。基於193奈米的技術在延伸至7奈米方面,因光源波長的繞限極限以及光源的吸收而有所限制。因此,需要檢查工具光源的波長勢必朝向短波長前進。而極紫外光源具有高亮度,穩定性(空間和時間)和成本效益是未來重要的發展方向。

 在利用矽鉬多層分光器和反射鏡形成的具有共同路徑的邁克森干涉儀來實現系統的緊實性。基於Wiener-Khinchin定理,通過對測量的信號自相關進行模擬分析而無需波長校準來獲得準確的極紫外光譜。此外,本論文提出了一種非侵入性的共路光學同調斷層掃描術(OCT, optical coherence tomography),其縱向解析度為64.6奈米,用來量測分析矽鉬多層膜鏡的薄膜疊層厚度及其複合傳遞函數。矽鉬疊層的複合傳遞函數在原始的13.5奈米波長範圍內被實驗和模擬驗證。擁有這些知識和成就後,基於極紫外光源的新型光學同調斷層掃描術同時使用雷射產生電漿的極紫外光源和共路設計,顯示出極紫外光源的光學同調斷層掃描術將成為光罩檢測的非破壞性成像方法。

圖一、共路式極紫外光源同調斷層掃描系統示意圖

圖二、量測所得之極紫外光源干涉訊號

 
 
 
版權所有   國立臺灣大學電機資訊學院光電工程學研究所   http://gipo.ntu.edu.tw/
歡迎轉載   但請註明出處   http://gipo.ntu.edu.tw/monthly.htm/